## TITLE PAGE

## OPTIMISATION OF DATA THROUGHPUT FOR LEO SATELLITE DOWNLINK USING TRELLIS CODED MODULATION.

BY<br>MOHAMMED, UMAR MASKA PG/UD/M.ENG/07/73.

DEPARTMENT OF ELECTRONIC ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA

February, 2016.

CERTIFICATION

This is to certify that MOHAMMED, UMAR MASKA, a post graduate student in the Department of Electronic Engineering, University of Nigeria, Nsukka, with Registration number PG/UD/M.ENG/07/73 has satisfactorily completed the requirements for course and research work for the degree of Mastersôof Engineering (M.Eng) in Telecommunication Engineering.
$\qquad$

Date

External Examiner.

Date
DECLARATION

The work embodied in this thesis is original and has not been submitted in part or in full for any other Diploma or Degree in this University or any other University.

Mohammed, Umar Maska

Date

## DEDICATION

This thesis is dedicated to the Almighty God and all Praises belong to Him.

## ACKNOWLEDGEMENT

I wish to express my profound gratitude to my supervisor, Prof. A.N Nzeako for his inspirational guidance and encouragement which made this work a success. I am also grateful to the Head Department, Professor C. Ani who through his lecturesgave insight on the significance of error control coding in Digital Communications.

My appreciation also goes to the former Director of Digital Bridge Institute Abuja, Dr U. Okechukwu who also gave me insight on research method and his administrative staff Mrs. Muslimat A. Taiwo for her support and encouragement toward the success of this work.

This acknowledgement will not be complete without commending my colleagues in the National Space Research and Development Agency (NASRDA), Eng. Akachukwu Chebe and Eng. O. Adetoro who shared their experience with me on the Operation of Nigeriasat-1 Ground Station.

Mohammed, Umar Maska

## TABLE OF CONTENTS

## Page

TITLE PAGEi
CERTIFICATION AND APPROVAL
ii
DECLARATION
iii
DEDICATIONivACKNOWLEDGEMENTv

```
TABLE OF CONTENTSvi
LIST OF TABLESix
LIST OF FIGURES
xi
LIST OF ACRONYMS
xiv
ABSTRACTxvi
```


## CHAPTER ONE

```
GENERAL INTRODUCTION
1.0 Introduction1
1.1 Motivation
1
1.2 Problem Statement 2
1.3 Objective of the Study 2
1.4 Significance of the Study21.5Scope of Study and Methodology
2
```


## CHAPTER TWO

```
LITERATURE REVIEW
2.0 Introduction
4
2.1 Low Earth Orbit and Ground Track
4
2.2 Geometry of LEO Satellite Visibility
8
2.3 Downlink Budget Analysis of a LEO Satellite
12
2.4 Basic Digital Modulations for SatelliteCommunications16
2.5 Probability of Error in BPSK and QPSK Schemes
20
2.6 Error Control and Coding Gain
25
2.7 Spectral Efficiency in Power and Bandwidth Limited Link 26
2.8 Reviews on Past Publications on Optimisation of LEO satellite
Downlink 29
```

2.8.1 Adaptive Variable Data Rate: An IEEE Paper by M.A Matar29
2.8.2 Optimisation Through Hybrid-ARQ: An IEEE Paper from University of Surrey 31
2.8.3 Adaptive Communication System for Implementation on Board a Future Algerian LEO Satellite, a 2007 IEEE Paper
34
CHAPTER THREE
TRELLIS CODED MODULATION AND THE CONCEPTUAL MODEL
3.0 Introduction 37
3.1 Euclidean Distance in MPSK Schemes ..... 38
3.2 Convolution Coding Technique ..... 39
3.2.1 Trellis Diagram ..... 41
3.2.2 Coding Gain in Convolution Coding ..... 43
3.3 Set Partition Theory ..... 46
3.4 Trellis Cod The ed Modulation (TCM) Scheme ..... 48
3.4.1 Implementation of TCM/8-PSK ..... 50
3.4.1 Coding Gain in Trellis Coded Modulation ..... 54
3.4.3 High Gain TCM/8-PSK Schemes ..... 56
3.5 The Conceptual Model: Integrated Multi-State TCM ..... 64
3.5.1 Design of Multiple State Encoders ..... 66
CHAPTER FOUR
COMPUTER SIMULATIONFOR CODING GAIN
4.0 Introduction ..... 89
4.1 MATLAB Bit Error Rate Analysis Tool (bertool) ..... 90
4.2 Simulations of MPSK Theoretical Links ..... 93
4.3 MATLAB Template for Downlink Mode ..... 100
4.4 Building MATLAB Downlink Block Model ..... 102
4.4.1 Settings for Monte Carlo Simulation ..... 105
4.5 Simulations of MPSK Downlink Block Models ..... 106
4.6 Simulations of TCM Block Downlink ..... 115
4.7 Discrete Simulations of Multi-State TCM/8-PSK Encoders ..... 120
4.8 Modification and Simulation of the Conceptual Model ..... 127
4.9 Data ThroughputMeasurements for Optimisation ..... 129
CHAPTER FIVE
ANALYSIS OF SIMULATION RESULTS
5.0 Introduction133
5.1 Performance of Convolution coded MPSK on Theoretical Links ..... 134
5.2 Performance of Convolution coded MPSK on Downlink Block Models ..... 135
5.3 Performance of TCM/MPSK on Downlink Block Models ..... 137
5.4 Discrete Performance of Multi-StateTCM/8-PSK Encoders139
5.5 Performance of Multiplexed Multi-State TCM/8-PSK Encoders 140
5.6 Data Throughput Comparison and Optimisation on LEO Downlink Block Models141
CHAPTER SIX
CONCLUSION AND RECOMMENDATION144
REFERENCES146
APPENDICES
A. Pulse Shaping and Nyquist Filters148
B. Analysis on High Power Amplifier 155

## LIST OF TABLES

### 2.1 Linear Displacement of LEO Ground Track

2.2 Visibility Duration of LEO Satellite

11
2.3Phase angle ű of I- Channel and Q-Channel in QPSK 18
2.4QPSK Implementation 19
2.5 Adaptive Discrete Rate in Fading Region

35
3.1 State Transition Table of a 1/3- Rate Convolution Encoder 41
3.2A 1/3-Rate Convolution Encoder State - Output Table

41
3.3 State Table for a Simple TCM

52
3.4 Transition Tables for 8-State Feedback TCM/8-PSK

57
3.5 Transition State table for a 16-State Feedback TCM/8-PSK 60
3.6 Coding Gain Variation in Multiple Transition State TCM633.7

Transition and Output Table for a 4-State TCM/8-PSK
683.8Transition and Output Table for a 8-State TCM/8-PSK
713.9Transition and Output Table for a 16-State TCM/8-PSK 743.10Transition and Output Table for a 32-State TCM/8-PSK

77
3.11Transition and Output Table for a 64-State TCM/8-PSK 80
3.12Transition and Output Table for a 128-State TCM/8-PSK
844.1Performance Summary ofUncoded, Convolution Coded and TCM onMPSK Downlink Block Model atBER=10 $0^{-6} 113$
4.2 Data Rate of Uncoded, Convolution Coded and TCM on MPSK

Downlink Block Model at $5 \times 10^{6} \mathrm{Sps}$ and bandwidth 5.5 MHz 114
4.3 Performance Summary of TCM/MPSK on Downlink Block Model atBER $=10^{-6} 119$
4.4 Performance Summary of Discrete Simulation of Multi-stateEncoders
on Downlink Block Model at BER $=10^{-6}$ ..... 126
4.5Simulated Free Space Loss Insertion on MultiplexedMulti-State Downlink Model127
4.6Data Throughput of Un-coded MPSK Downlink Block Models ..... 130
4.7Data Throughput of Convolution Coded MPSK Downlink BlockModel131
4.8Data Throughput of TCM/MPSK Downlink Block Models 131
4.9 Data Throughput on Multi-State TCM/8-PSK Encoders132 5.1Performance Analysis of Theoretical MPSK Links134
5.2Coding Gains of Convolution Codes on Theoretical MPSK Links135
5.3Performance Analysis of Uncoded and Convolution CodedMPSK on Downlink Block Models136
5.4Coding Gains of Convolution Codes on MPSKDownlink BlockModels137
5.5 Performance Analysis of TCM/MPSK on Downlink block model138
5.6Coding Gains of TCM/MPSK on Downlink Block Models138
5.7Coding Gain Comparison between Convolution code and TCM1385.8 Discrete Coding Gains of Multi-State TCM/8-PSK Encoders 1405.9Differential Coding Gains of Multi-State Encoders from 3dB141
5.10 Data Throughput Comparison between Uncoded, ConvolutionCodedand TCMon MPSK Downlink Block Model1425.11Optimisation of Data Throughput on Multi-State TCM/8-PSK143

## LIST OF FIGURES <br> Page

2.1 Low Earth Orbit Satellite and Ground Track Displacement
62.2 Geometry of LEO Satellite Visibility
92.3 Sketch of LEO Satellite Downlink and its Components
122.4 Gain Pattern of QuadriFilar Helix (QFH) Antenna
162.5 Block Diagram of Binary Phase Shift Keying

Implementation 162.6 Schematic of QPSK Implementation
192.7 QPSK Signal Points
202.8 Probability Density Function (PDF) of Antipodal

Signal Point 212.9 Graph of Probability of Error $\mathrm{P}_{\mathrm{e}} \mathrm{Vs} \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ for BPSK and QPSK242.10 Graph of Probability of Symbol Error in MPSK Schemes 252.11 Graph of Probability of Bit Error in Uncoded and Coded BPSK 262.12Graph Spectral Efficiency in Power Limited Link 282.13Graph of Spectral Efficiency in Bandwidth
Limited Link 282.14 Geometry of Earth-Satellite Angular

Relationship
Coding Scheme
Signal Constellation
Encoder
3.3State Transition Diagram of 1/3-rated Convolution Encoder 40
3.4 Trellis Diagram of $1 / 3$-rated Convolution Encoder 41
3.5 Diagram of Coding Process in 1/3-rated Encoder ..... 42
3.6 Convolution Encoder of L Blocks of k-Stage Shift Registers ..... 43
3.7Diagram of $2 / 3$ rated Convolution Encoder ..... 44
3.8Mapping of 2-bits and 3-bits Sequences ..... 44
3.9Trellis of a $2 / 3$ Convolution Code and Coding Gain ..... 45
3.10Set Partitioning of an 8-PSK Signal Points473.11Examples of Trellis Coded Modulation Schemes ..... 49
3.12 General Diagram of Trellis Coded Modulation Scheme ..... 50
3.13 A Simple TCM and State Transition ..... 51
3.14 Mapping of TCM/8-PSK Output $\left(\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}\right)$ in a Constellation ..... 52
3.15 Trellis Diagram for a Simple TCM Scheme ..... 53
3.16 Minimum Distance Transition Path in a TCM Scheme ..... 55
3.17 Systematic Feedback of an 8-State Transition TCM/8PSK 56
3.18 Trellis Diagram of an 8-State Transitions TCM/8-PSK ..... 58
3.19Mapping for an 8-State TCM/8-PSK in Constellation ..... 59
3.20 Systematic Feedback of a 16-State Transition TCM/8-PSK 593.21 Trellis Diagram of a 16-State TCM/8PSK 623.22 Mapping for a 16-State TCM/8PSK in Constellation 633.23TheConceptual Model ï An Integrated Multi-State
TCM/8-PSK ..... 65
3.24A ½-Rate Convolution Encoder frompoly2trellis(5, [35 31]) 67
3.25A 4-State TCM/8-PSK Encoder: poly2trellis([3 1],[0 7 1;1 0 0]) ..... 68
3.26 Mapping for a 4-State TCM/8-PSK in Constellation ..... 69
3.27 An 8-State TCM/8-PSK Encoder: poly2trellis([2 3],[0 3 1; 403 3]) ..... 71
3.28 Mapping for a 8-State TCM/8-PSK in Constellation
72
3.29A 16-State TCM/8-PSK Encoder:poly2trellis([2 4],[0 3 1;10 1 5]) 73
3.30 Mapping for a 16-State TCM/8-PSK in Constellation ..... 74
3.31A 32-StateTCM/8-PSK Encoder: poly2trellis([3 4],[0 5 3;10 113]) 76
3.32 Mapping for a 32-State TCM/8-PSK in Constellation ..... 78
3.33 A 64-StateTCM/8-PSK Encoder:poly2trellis([4 4],[0 11 7; 104 3]) ..... 79
3.34 Mapping for 64-State TCM/8-PSK in Constellation ..... 82
3.35 128-StateTCM/8PSK Encoder:poly2trellis([5 4],[0 23 14; 1015 3]) ..... 84
3.36Mapping for 128-StateTCM/8-PSK in Constellation ..... 88
4.1 Bit Error Rate Tool box (bertool)on MATLB Execute Window ..... 93
4.2 Plot of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ for Theoretical BPSK Link ..... 94
4.3Plot of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ for QPSK Scheme on Downlink ..... 96
4.4Plot of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ for 8-PSK on Downlink ..... 97
4.5Plot of BER versus $E_{b} / N_{o}$ for 16-PSK on Downlink ..... 99
4.6Plot of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ for 32-PSK Scheme on Downlink ..... 100
4.7 MATLAB RF Satellite Downlink Template Model 102
4.8 A Convolution Coded QPSK Downlink Block Model ..... 1044.9 Convolution Coded QPSK Constellation at $E_{b} / N_{o}=10.7 d B$109
4.10Convolution Coded 8-PSK Constellation atE $_{b} / \mathrm{N}_{0}=14.5 \mathrm{~dB}$ ..... 110
4.11 Convolution Coded 16-PSK Constellation at $E_{b} / \mathrm{N}_{0}=19.5 \mathrm{~dB} 1124.12$
Convolution Coded 32-PSK Constellation atE ${ }_{b} / \mathrm{N}_{\mathrm{o}}=28.5 \mathrm{~dB}$ ..... 114
4.13Spectrum Scope of Convolution Coded 32-PSK at 5.5 MHz ..... 115
4.14 ATCM/QPSK Downlink Block Model ..... 117
4.15 TCM/QPSK Constellation at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=7.0 \mathrm{~dB}$ ..... 118
4.16 TCM/8-PSK Constellation at $\mathrm{E}_{b} / \mathrm{N}_{0}=9.5 \mathrm{~dB}$119
4.17TCM/16-PSK Constellation at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=13.0 \mathrm{~dB}$1204.18 TCM/32-PSK Constellation at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=18 \mathrm{~dB}$121
4.19 TCM/8-PSK Downlink Block Model ..... 122
4.20Plot of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ for a 4-State TCM/8-PSK ..... 123
4.21 Plot of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ for a 8 -State TCM/8-PSK124
4.22 Plot of BER versus $E_{b} / N_{0}$ for a 16-State TCM/8-PSK ..... 125
4.23 Plot of BER versus $\mathrm{E}_{b} / \mathrm{N}_{0}$ for a 32-State TCM/8-PSK 125
4.24 Plot of BER versus $E_{b} / N_{0}$ for a 64-State TCM/8-PSK ..... 126
4.25 Plot of BER versus $\mathrm{E}_{b} / \mathrm{N}_{0}$ for a 128 -State TCM/8-PSK ..... 127
4.26Multiplexed Multi-State TCM/8-PSK on Downlink129

## LIST OF ACRONYMS

| ADR | Adaptive Discrete Rate |
| :--- | :--- |
| AM-DSBSC | Amplitude-Modulation with Double-Sideband- <br> Suppressed-Carrier |
| ARQ | Automatic Retransmission Request <br> AWGN |
| Additive White Gaussian Noise |  |
| AX.25 | Amateur form of X.25 (packet radio transmission) |
| BER | Bit Error Rate |
| bertool | bit error rate (analysis) tool |
| C/N | Carrier power to Noise power ratio |
| dB | Decibel |
| E $^{\prime} /$ N $_{0}$ | Energy per bit to Noise spectral density ratio |
| EIRP | Effective Isotropic Radiated Power |
| FEC | Forward Error Correction |
| FSL | Free Space Loss |
| GEO | Geosynchronous Orbit |


| Gbps | Giga bits per second |
| :--- | :--- |
| HPA | High Power Amplifier |
| Hz | Hertz |
| I-Channel | In phase channel (for QPSK scheme) |
| IEEE | Institute of Electrical and Electronics Engineers |
| LEO | Low Earth orbit |
| LLR | Log Likelyhood Ratio |
| LNA | Low noise amplifier |
| MATLAB |  |
| Mbps | Megabits per second |
| MHz | Mega Hertz |
| MPSK | Multi-Phase Shift Keying |
| MQAM | Multilevel Quadrature Amplitude Modulation |
| MSED | Minimum Squared Euclidean Distance |
| NASRDA | National Space Research and Development Agency |
| PDF | Probability Density Function |
| QAM | Quadrature Amplitude Modulation |
| Q-Channel | Quadrature Channel (for QPSK) |
| QFH | QuadriFilar Helix (antenna) |
| QPSK | Quadrature Phase Shift Keying |
| RF | Radio Frequency |
| SED | Squared Euclidean Distance |
| SNR | Signal to Noise ratio |
| Sps | Symbol per seconds |
| TCM | Trellis Coded Modulation |


#### Abstract

The line of sight communication between an orbiting LEO satellite and its Ground Station is time constrained by duration of visibility and number of visible passes in a day. In Equatorial region like Nigeria, the average duration is short and number of passes is very few. In most cases, the satellite size is small and therefore power generated on-board is also small, consequently the downlink budget is power constrained. Transmission bandwidth is also constrained by Regulations and need for cost effective RF design. High resolution remote sensing LEO satellite that acquires large data to be downloaded to a Ground station requires high capacity downlink at minimum power that guarantee BER of $10^{-6}$. Application of high level MPSK for high data rate requires more power to reduce transmission errors. Convolution or Block codes when used for Error Correction adds overhead bits to the detriment of the link capacity and without significant coding gain for a power limited downlink. Trellis Coded Modulation (TCM) developed in 1982 by Ungerboeck et el, though still adds overhead bits, but generates significant coding gain that can be extended up to 6dB. This Thesis seeks to optimise LEO Satellite Downlink that is Time, Power and Bandwidth constrained, through trade-off between the coding gains of TCM for bandwidth efficient high level MPSK schemes.


## CHAPTER ONE

## GENERAL INTRODUCTION

### 1.0 Introduction

Aremote sensing satellite is launched into Low Earth Orbit (LEO) to acquire data from the Earth surface. When viewed from the Earth,the satellite in LEO does not appear stationaryas in the case of a satellite in Geostationary orbit (GEO), instead it is observed to rise from horizon and travelalong its orbituntil it set in the other side ofhorizon.

Telemetry and acquired data on the satellite are communicated to Earth or Ground Station via Downlink, while command and control signal from the Ground Station are communicated to the satellite via Uplink. Both the Downlink and Uplinkare established onlywithin line of sight.Because of that antenna dish of the Ground Station tracks LEO satellite from horizon to horizon. The number of time a LEO satellite passes over a Ground Station are few in a day and its durationsusually last few minutes depending on altitude of the orbit and latitude of the Ground Station .
Selection of orbit altitude is determined by satellite mission and Ground stations located in Equatorial region haveshorter duration and less number of satellite passes in a day than those in high latitude. There are various forms of low earth orbit orientation, but in general all have limited duration of visibility and number of passes in a day. [1]
In most remote sensing missions, LEO satellites are designed to be small in size which limits on-board power generation, consequently the downlink and other satellite subsystems are power limited. Also most LEOsatellites are designed to be cost effective, for that reason wide bandwidth are avoided in the communication subsystem.
In a Downlink digital communicationdata bits are subjected to error control or channel coding before modulation. This is necessary in low power link and noisy channel to improve reliability of received data. However, coding in general requiresoverhead bits, which reduces data throughput of the link or requires additional bandwidth. To conserve bandwidth at improveddata throughput some high level digital modulations with good spectral (bandwidth) efficiencyare used, but this also requires more transmission power.

### 1.1 Motivation

When Nigeria launched its first remote sensing satellite Nigeriasat-1, in September, 2003,it was launched into Low Earth Orbit of altitude 686Km and inclination of $98.19^{\circ}$, with mission objective to obtain optical image of the Earth surface at 32 m resolution. A Ground station for the Satellite was built in Abuja, which experiences two or three communication passes daily.Many of the daily passes are too short for communication
purpose, the maximum duration was 10 minutes, which occurred at 5 days intervals.
A low power, high rate transmitter of 8 Mbps was used to download image taken from any part of the globe. Optimisation of downlink capacity for LEO Satellite is therefore important in Nigeria andEquatorial region

### 1.2Problem Definition

The downlink of Nigeriasat-1 is constrained in power, bandwidth, and communication time. Daily data throughput on the downlink transmissions was not adequate to download the whole contents of the image recorder, the contents have to be fragmented and downloaded over many days.

In LEO satellite communications convolution coding and Multi-Phase Shift Keying (MPSK) are two preferred techniques used for error control coding and digital modulation respectively [1, 11]. Convolution coding has maximum gain of 3 dB which is not sufficient for the problem stated. Trellis Coded Modulation (TCM) is a technique that applies coding and modulation differently from conventional communication systems. It combined convolution coding and MPSK concurrently to yield high coding gain, while maintaining high spectral efficiency of MPSK.

### 1.3 Objective of the Study

This research work seeks to harness communication time, coding gain and spectral efficiency in digital communications for optimisation of data throughputby:

- Evaluationof orbital factors that restrict visibility of LEO satellite to maximise communication time in Equatorial region.
- Evaluationand simulation of the limitation ofconvolution codes in LEO satellite downlink.
- Evaluation and simulation ofthe power constrain for using higher MPSK in LEO satellite downlink.
- Evaluation and Simulation of thepotentials of TCM/MPSK for optimisation of data throughput in LEO satellite downlink.


### 1.4 Significance of the Study

Technological trend in remote sensing satellite is moving toward using high resolution sensor or camera thisimplied increased downlink data size.[1] Optimisation of downlink data throughputtherefore is imperative in the communication subsystem offuture remote sensing satellites, especially for Earth Stations in regions that have few and short communication passes.

It is also expected that results of this research thesiswouldbe useful inother wireless terrestrial transmission that are constrained in power, bandwidth and communication time.

### 1.5Scope of the Studyand Methodology

The Shannonï Hartley Theorem stated that for error free communication the capacity of a transmission linkcan be increased by increasing its signal-to-noise ratio (SNR) and/or bandwidth. In LEO satellite downlink both the transmission power and bandwidth are limited. This work will seek apparent power and bandwidth from TCM/MPSK to increase the capacity of the downlink.
This research workwill confine itself to the analytical method and MATLAB simulations of various downlink modelsto harness coding gain and spectral efficiency for the optimisation. The approach is similar to some past researches on optimisationofLEOsatellite downlink in which modulations, error control codings and other communication protocols were harnessed. [7, 8, 9,10]

## CHAPTER TWO

## LITERATURE REVIEW

### 2.0 INTRODUCTION

This chapter presents theoretical background on some major concepts of LEO satellite Communications. It begins with orbital mechanics to determine line of sight communication with the satellite. The communication channel for LEO Satellite in this work is considered to be Additive White Gaussian Noise channel (AWGN)with Large Free Space Loss (FSL) as a major link impairments. [1]

Link equation for the downlink, in terms of SNR or Carrier to Noise ratio ( $\mathrm{C} / \mathrm{N}$ ), is presented. Then using Shannon's Channel Capacity Theorem, transmission bandwidth and $\mathrm{C} / \mathrm{N}$ are identified as key parameters for optimization of transmission rate. Phase shift keying (PSK) is introduced as bandwidth efficient bandwidth digital modulation scheme, that is suitable for LEO satellite downlink

Errors in data communication due to white noise and weak signal are treated and Probabilities of error $\left(\mathrm{P}_{\mathrm{e}}\right)$ for some MPSK schemes were derived from the first principle.The concept Bit Error Rate (BER)as a measurable parameter and its relation to $\mathrm{P}_{\mathrm{e}}$ is presented. A brief introduction is made on the concept of Error control and coding gain. The effect of spectral efficient schemes in power and bandwidth limited channel is discussed using Shannon $\hat{\mathscr{S}}$ link capacityTheorem.

Atsecond part of the chapter some past research works on optimization of LEO satellite communication link are presented.

### 2.1 Low Earth Orbit and Ground Track

The nature of Low Earth Orbit is determined by mission objectives and payload operational requirements. The altitude is determined through trade-offs between maintaining the satellite in its orbit in presence of atmospheric drag, space radiation and camera or sensor resolution.In practice, orbit altitude of $450-800 \mathrm{~km}$ range is required for LEO satellite mission expected to last 5 years.[1].

Orientation of the orbit also dependson the mission of the satellite. Typical orientations areEarth synchronousandSun-synchronous [1]. Earth synchronous orbitis non-circular and the orbit plane is made torotate at same rate with Earth rotation (i.e. $360^{\circ}$ in 24 hours). This is useful for satellite mission that requires daily revisit toa particular area, but not applicable in remote sensing missions for global coverage.Sunsynchronous also known as Polar orbit, the orbit is circular, its plane is made to incline at close $90^{\circ}$ to the equatorial plane, and rotate regressively at same rate with the Earth orbiting the Sun (making $360^{\circ}$ rotation in $365.25 d a y s$ ). In this form, the orbit plane remains at same orientation to the Sun throughout the year. This is what makes it Sun-synchronous, it is very useful for optical remote sensing and missions withnear global coverage, its disadvantages are short visibility duration and direct overhead (maximum duration) pass occurs at interval of 5 days. This thesis work is on Circular Sun-synchronous Low Earth Orbit.

InSun-synchronous orientation, the satellite orbit the Earth in about 90 minutes, within this period the Earth rotate eastward so that after each orbit, its ground track is displaced westward.lt is the extent of this displacement that determines the visibility of satellite in the next orbit. The ground track displacement is determined as follows.

Let $P_{E}$ be period for earth rotation(one day) and $P$ be satellite orbital period of orbit in figure 2.1. During orbital period $P$,the Earth rotate eastwardby angle $\mathrm{qp}_{1}$ and the satellite orbit plane regression (rotation) westward by angle $\mathrm{qP}_{2}$. Thenwest ward angular displacement of the ground track due to earth rotation $\mathrm{qp}_{1}$ is given by: [5]

$$
\Phi=-2 \text { - ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .............. } 2.1
$$

Assuming eastward displacement to be positive.
If $P_{\text {Esis }}$ the period orbit plane rotation about its axis (one year), thenground trackdisplacement eastwarddue to this rotation is $q p_{2}$ given by [5]:

$$
\Phi=2 \text { - ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... } 2.2
$$

Net ground track longitudinal displacement $q p$ is

$$
\Phi=\Phi+\Phi \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... . } 2.3
$$

Eastward Earth rotationqp $1_{1}$


Figure 2.1Low Earth Orbit Satellite and Ground Track Displacement.
Since $P_{E}=24 \times 60 \times 60 \mathrm{sec}$ and $P_{E S}=P_{E} \times 365.25 \mathrm{sec}$, then

$$
\begin{align*}
\Phi & =2 \quad-\frac{1}{+}+\frac{1}{365.25} \\
& =2-\times 0.9973
\end{align*}
$$

According Keplarês Third law of orbital mechanics, which states that: The square of the orbit period $P$ is proportional to the cube of the mean distance between the two bodies [3].

In our case the mean distance is from the Earth centre to the satellite, (i.e. Earth radius $\mathrm{R}_{\mathrm{E}}$ plus height above the earth $h$ )

Using the law for a circular orbit, P can be written as

$$
=2 \text { é é é é é é é é é é é é é é é . } 2.5
$$

where, $\varepsilon$ is Keplar $\hat{\mathbb{S}}$ constant (a product of universal gravitational constant $G$ and mass of the Earth) $=3.986 \times 10^{5} \mathrm{~km}^{3} / \mathrm{kgs}^{-2}$ and Earth radius $R_{E}=6378.14 \mathrm{~km}$.
a) Ground Track Linear Displacement along the Equator

Let linear displacement of the ground track along the equator be æ, then using geometry of the Earth

$$
\Delta=\Delta
$$

Where $R_{E}=$ radius of the equator
Using equation 2.04

$$
\Delta=2-
$$

Again substituting for P from equation 2.7

$$
=4-\frac{+0}{\frac{+0}{}} \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ........ ... .... .2.8 }
$$

$$
=2.914 \overline{\frac{6378.14+[0}{3.986 \times 10}}
$$

Assuming orbit height $\mathrm{h}=800 \mathrm{~km}$ $\therefore \Delta=2806.9 \mathrm{Km}$
b) Ground Track Linear Displacement along Latitude $L_{t}$

Let linear displacement of the ground track along latitude $L_{t}$ be $\not x^{\hat{0}}$, then using geometry of the Earth,

Radius of a latitude $L_{t}=\cos$ )
Therefore corresponding linear displacement $\Delta$ is given by:

For orbit height $h=800 \mathrm{~km}$

$$
\Delta=2806.9 \cos
$$

Ground track linear displacement between to two succeeding orbits at various latitudes are obtained using equation 2.9, the results are tabulated in table 2.1

$$
\begin{aligned}
& \Delta=\Delta \quad \cos \\
& \text {. } 2.9 \\
& =\Delta \cos
\end{aligned}
$$

Table 2.1Linear Displacement of LEO Ground Track

| $S / N$ | Ground Station Latitude $L_{t}$ | Ground Track linear <br> Displacement ${ }^{\prime}(\mathrm{km})$ |
| :--- | :--- | :--- |
| 1 | $0^{\circ}$ | 2806.96 |
| 2 | $15^{\circ}$ | 2711.25 |
| 3 | $30^{\circ}$ | 2430.84 |
| 4 | $45^{\circ}$ | 1984.77 |
| 5 | $60^{\circ}$ | 1403.45 |
| 6 | $75^{\circ}$ | 726.479 |
| 7 | $85^{\circ}$ | 244.64 |

It can be seen from Table 2.1 that at higher latitudes the linear displacements is shorter than at Equator. This implied thatat higher latitude the ground tracks of succeeding overlap more than at lower latitude e.g. in the Equator region. Thisimplied there are more number of visible orbits on higher latitudes than on the Equatorial region [1].

Further orbital analysis to determine width of ground track is extensive and beyond the scope of this work[1].

### 2.2 Geometry of LEO Satellite Visibility

To obtain duration of visibility for a LEO satellite, a satellite pass directly overhead an Earth station at Bis considered as shown in figure 2.02, if the Earth is assumed to be a perfect sphere of radius $R_{E}$, the satellite is visible on arc AE, which subtends angle 2űo at Earth centre C. When the satellite just appears above the horizon,communication along line of sight ABwould be largely affected withblockage and multipath due surrounding hills and buildings. Therefore, no effective communication is established along orbit arc AD, until the satellite rises to certain angle of elevation of above horizon [5]. A clear line of sight communication is established as the satellite moves along the arc DF, similarly along the arc $E F$ there is also no communication.

A
DSatellite

E


Figure 2.2Geometry of LEO Satellite Visibility [5]
Thetwo arcs AE and DFsubtend angle 2űo and 2ű respectively at Earth centre C. To calculate visibility angle 2 ú, the Sine rule is applied to triangle BCD on figure 2.2, so that:

$$
\begin{aligned}
& \overline{\sin 90^{\circ}+}=\overline{\sin } \\
& \therefore \quad \frac{+0}{\sin 90^{\circ}+}=\frac{}{\sin }
\end{aligned}
$$

But $d=\left(180^{\circ} i \neq\left(u ̋+\left(90^{\circ}+d\right)\right)=\left(90^{\circ}-(u ̋+d)\right)\right.$,
Simplifying equation 2.10

$$
\begin{align*}
& \frac{+\pi}{\cos }=\frac{}{\cos +} \\
& \therefore \quad \cos +\quad=\frac{\cos }{+\pi} \\
& \therefore \quad=-+\cos \frac{\cos }{+ \text { ? }}
\end{align*}
$$

Also let $\gamma_{,} \gamma_{E}$ and $\gamma_{E S}$ be angular velocity of the Satellite,Earth and relative angular velocity of the satellite to Earth. The three angular velocity are related as given by.[5]

$$
=\quad+\quad-2 \cos
$$



$$
\therefore \quad 2 \quad \cos \quad \sim 0
$$

But $=224 \times 60 \times 60=7.272 \times 10 /$ Since $\gamma_{E}$ is verysmall, it is sufficient to use $\gamma$ Eså $\gamma$ in equation 2.12 Angular velocity of a satellite in circular orbit of period $P$ is

$$
=\frac{2}{}
$$

Substituting for P using the Keplar©̂́s law from equation 2.07

$$
=\frac{1}{+} \text { +.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... . } 2.13
$$

And substituting for $\varepsilon=3.986 \times 10^{5} \mathrm{~km}^{3} / \mathrm{s}^{2}$ and $R_{E}=6378.14 \mathrm{~km}$ in equation 2.12

$$
=\frac{631.34}{6378.14+0}
$$

To determinethe maximum duration of visibility đôfor direct overhead pass full visibility angle $=2$ ű is used and is given as [5]

$$
\begin{align*}
& \text { = } 2 \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... . } 2.14 \\
& \therefore \quad=\frac{2 \overline{6378.14+\text { ? }}}{631.34} .
\end{align*}
$$

Maximum durations of visibility are calculated for various orbital heights and tabulated in table 2.2. Range of orbit heights from 400 to1000 km are considered from three visibility elevation angles of $0^{\circ}, 5^{\circ}$ and $10^{\circ} \mathrm{in}$ table 2.2(a), (b) and (c) respectively.Below $5^{\circ}$ elevation angle, theline of sight communication suffers blockage and multipath, but has longer periods of visibility. Above $5^{\circ}$ is considered adequate in most cases, except in highly urbanised locations even at that the maximum duration of visibility/communication is less than 15 minute, which occurs rarely (one in 5 days). At elevation above $10^{\circ}$, the communication is free but with short durations, hence the need for optimisation of data throughput.

Table 2．2VisibilityDuration of LEO Satellite referenced to：
（a）Look－up Elevation Angle of＝0

| S／N | Orbit Height （km） | Visibility Angle at Earth centre 2ű（degrees） | Visibility Angle at Earth Centre 2ű（radians） | Duration of visibility （sec） | Duration of Visibility （Min） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 400 | $39.56{ }^{\circ}$ | 0.6905 | 610.33 | 10â0ペ |
| 2 | 500 | $43.96{ }^{\circ}$ | 0.7673 | 693.27 | 11 ®3ペ |
| 3 | 600 | $47.96{ }^{\circ}$ | 0.8354 | 771.33 | 12馬1 $\hat{6}$ |
| 4 | 700 | $51.39^{\circ}$ | 0.8970 | 846 | 14¢¢ |
| 5 | 800 | $54.61^{\circ}$ | 0.9532 | 918.24 | 15â8ペ |
| 6 | 900 | $57.59^{\circ}$ | 1.0052 | 988.56 | 16®9ペ |
| 7 | 1000 | $60.36^{\circ}$ | 1.0535 | 1057.51 | 17＠8®® |

（b）Look－upElevation Angle of＝5 ${ }^{\circ}$

| S／N | Orbit Height （km） | Visibility Angle at Earth centre 2ű（degrees） | Visibility Angle at Earth Centre 2ű（radians） | Duration of visibility （sec） | Duration of Visibility （Min） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 400 | $29.56{ }^{\circ}$ | 0.516 | 456 | 7®6ペ |
| 2 | 500 | $33.96{ }^{\circ}$ | 0.593 | 535.67 | 8（560ベ |
| 3 | 600 | $37.87^{\circ}$ | 0.6609 | 610.22 | 10¢10ヘ̃ |
| 4 | 700 | $41.39^{\circ}$ | 0.7224 | 681.43 | 11®1囘 |
| 5 | 800 | $44.61^{\circ}$ | 0.7787 | 750.11 | 12お0¢ |
| 6 | 900 | $47.59^{\circ}$ | 0.8306 | 816.911 | 13i36ã |
| 7 | 1000 | $50.36{ }^{\circ}$ | 0.8789 | 882.25 | 14ô42ヘ̋ |

（c）Look－up Elevation Angle $\mathrm{d}=10^{\circ}$

| S／N | Orbit Height （km） | Visibility Angle at Earth centre 2ű（degrees） | Visibility Angle at Earth Centre 2ű（radians） | Duration of visibility （sec） | Duration of Visibility （Min） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 400 | 19.56 | 0.3414 | 301.76 | 5â7 0 ＠ |
| 2 | 500 | $23.96{ }^{\circ}$ | 0.4182 | 377.84 | 6®0ベ |
| 3 | 600 | $27.96{ }^{\circ}$ | 0.488 | 450.57 | 7®0ペ |
| 4 | 700 | $31.39^{\circ}$ | 0.5479 | 516.75 | 8®7ヘ̋ |
| 5 | 800 | $34.61^{\circ}$ | 0.6041 | 581.88 | 9 42 ¢̃ |
| 6 | 900 | $37.59^{\circ}$ | 0.6561 | 645.26 | 10¢̂5 ${ }_{\text {¢ }}$ |
| 7 | 1000 | $40.36{ }^{\circ}$ | 0.7044 | 707.12 | 119̂7¢ ${ }_{\text {© }}$ |

### 2.3 Downlink Budget Analysis of a LEO Satellite

The performance of a digital communication link is measured by its capacity and probability of error, which are both determined by received Signal to Noise Ratio (SNR) or Carrier to Noise ratio (C/N).[8] The aim in satellite downlink analysis is to find value of $\mathrm{C} / \mathrm{N}$ that guarantee low probability of error for a determined link capacity.
A schematic diagram of a LEO satellite downlinkis shown in figure 2.3. The satellite is at distance $S$ from its Earth Station (ES). If the satellite transmitter power is $\mathrm{P}_{\mathrm{T}}$, antenna gain $\mathrm{G}_{\mathrm{T}}$ and feeder Loss $\mathrm{L}_{\mathrm{T}} . \mathrm{At}$ its Earth station the receiver antenna gain is $G_{R}$, feeder loss $L_{R}$. Andother losses on the link are free space loss $L_{s}$ and atmospheric absorption $L_{A}$.

SPllite (Transmitter Power $\mathrm{P}_{\mathrm{T}}$, Antenna Gain $\mathrm{G}_{\mathrm{T}}$, Feeder Loss $\mathrm{L}_{\mathrm{T}}$ )


Received power $\mathrm{P}_{\mathrm{R}}$
Earth Station (ES)

Figure 2.3 ASketch of LEO satellite Downlink and its Components [3]
Using Friis's link equation.[3]Received powerof the downlink of $P_{R}$ is given by:

$$
=
$$

Where transmitter Effective Isotropic Radiated Power = and Free Space loss $L_{s}=4 /$ with $S$ is transmission path length and $\gamma$ is transmission signal wavelength.
Then,
$=$

The received power $P_{R}$ is typically very small, in order of picowatts which tend to be corrupted by Thermal noise. Thermal noise arises from electromagnetic signals generated by Thermodynamic motions of electrons within the receiver active and passive components, and alsoantenna picked-up galactic radiation.Thermal noise is generally characterized to be white because of its uniform spread across wide RF frequency spectrum with random Gaussian distribution.

At elevation of $5-10^{\circ}$ above the horizon, the link is free from terrestrial interference, so that only thermal noise isconsidered. The link is therefore characterised as operating in Additive White Gaussian Noise channel.

Thermal noise power N is calculated as function of noise temperature and receiver noise bandwidth.[1]
Noise power N is given by [1]:

$$
\begin{equation*}
= \tag{1}
\end{equation*}
$$

Where
$\mathrm{k}=$ Boltzmann $\hat{\Phi}$ constant $=1.39 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{T}_{\mathrm{s}}=$ Equivalent noise temperature of the system
$\mathrm{B}_{\mathrm{n}}=$ Receiver noise bandwidth measured in Hz
Thenusing equation 2.17 and 2.18 , the downlink equation can be expressed as ratio of carrier power to noise power $\mathrm{C} / \mathrm{N}$ :

- = -
$=$

For digital communication the equation is written in form energy per bit $\left(\mathrm{E}_{\mathrm{b}}\right)$, definedasproduct of received power $\mathrm{P}_{\mathrm{R}}$ and bit durationT[1]

$$
\begin{align*}
& =\quad \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... .2. } 20 \\
& = \\
& =
\end{align*} \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... } 2.21 \text {. }
$$

Where bit rate $R=1 / T$
But in AWGN, noise powerspectral density $\left(\mathrm{N}_{\mathrm{o}}\right)$ is uniform:

$$
\text { = — = ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... } 2.22
$$

Then taking energy per bit to noise spectral density ratio ( / ) as subject of equation 2.17[1]
— = -

Substituting the value for k in equation 2.23and taking the logarithm to express the parameters in decibel dB
$/=+\quad+\quad+\quad+\quad+228.6-10 \quad-10$
é é é é é é é é é é é é é é 2.24
In this is downlink equation $E_{b} / N_{o}$ is a function of transmission power (EIRP), losses ( $\left.L_{T}, L_{S}, L_{A}, L_{R}\right)$, receiving antenna sensitivity $\left(G_{R} / T_{s}\right)$, and transmission rate (R).[1]
The major variables in link equation are:
a. Transmitter EIRP;where transmitter power $\mathrm{P}_{\mathrm{T}}$ is limited because power generated ona small satelliteis small and has to be shared among all other on board satellite subsystems.Limited transmitter antenna gain $G_{T}$ can be realized,because it has to be small proportional to thesatellite size,therefore EIRP is limited.
b. Receiving antenna gain $\mathrm{G}_{\mathrm{R}}$; size of antennaat Earth Station is also limited for tracking purposes and to minimize antenna thermal noise. Thus antenna sensitivity $\mathrm{G}_{\mathrm{R}} / \mathrm{T}_{\mathrm{s}}$ is also constrained.
c. Transmission losses; Feeder losses ( $L_{T}$ and $L_{R}$ )can be minimized; while atmospheric loss is somewhat a random process. Free space loss ( $\mathrm{L}_{s}$ ) is the major variable and itvaries inversely to square of the range $\left(S^{2}\right)$ and transmitting frequency (which is predetermined by regulations). The distance $S$ varies significantly with time, it makes the LEO communication channel to have wide variation in path loss [7].

Satellitedistance is maximum $\left(S_{\max }\right)$ when the satellite just appearedabove the horizon or ata given elevation angle d, by using figure $2.02 \mathrm{~S}_{\text {max }}$ is given by:
$=\quad+0 \sin / \cos$... ... ... ...................... ... ... ... ... ... . . 2.25
And the range is minimum $\left(\mathrm{S}_{\text {min }}\right)$ when the satellite is directly overhead the Earth station

$$
\text { = } 0 \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .2.26 }
$$

Substituting for $S_{\text {max }}$ and $S_{\text {min }}$ in the formula for free space loss to get the variation as in [7]

$$
-\quad=\Delta=20 \log 4 \quad-20 \log 4
$$

$=-20 \log$

Using equations 2.26 and 2.27

Thus, using table 2.02 and equation 2.28, aLEO of altitude $\mathrm{h}=800 \mathrm{Km}$, elevation $o d=5^{\circ}$ and earth central angle $=22.31^{\circ}$, its variation in free space loss is given as

$$
-\quad=-10.83
$$

Thisvariation is very significantandMatar et alapplied variable data rate to counter it [7].
In the case of Nigeriasat-1, a specially shaped antenna gain pattern was used to compensate for this largevariation(up to 10 dB ). A Quadri Filar Helix Antenna (QFH) with gain pattern shown in figure 2.4 was used to deliver fairly constant SNR, as the satellite moves along its orbit during communication time


Figure 2.4 Gain Pattern of QuadriFilar Helix Antenna [18]

### 2.4Basic Digital Modulations for Satellite Communications

To guarantee certain quality of signal Qos (in this case level of error rate), aminimum value $E_{b} / N_{0}$ is required which is determined by the type of modulation used for the transmission.
In digital modulation, any parameters of the carrier - amplitude, frequency or phase - could be digitally altered or modulated. In satellite communication, phase and frequency modulation are generally preferred over amplitude modulation, because the former are less susceptible to power amplifier saturation distortion effect [1].
This thesis is based ondigital phase modulationknown as Multi-Phase Shift Keying (MPSK). Some basic forms ofMPSK are:
a) Binary Phase Shift Keying (BPSK): This is basically a phase reversal technique using bipolar digital signal on sinewave carrier. Basic amplitude-modulation with double-sideband-suppressed-carrier (AM ï DSBSC) produces the effect of phase reversal, when nonreturn to zero pulses is used as modulating signal..


Figure 2.5Block Diagram of BPSK Implementation [2]

When binary signal is +1 as shown in figure 2.5 , the carrier sinusoid is unchanged but when it is -1 the carrier sinusoid is changed in phase by $180^{\circ}$. The modulated wave $\mathrm{e}(\mathrm{t})$ is a linear product of the two inputs written as

$$
=\quad \cos
$$

When = +1, then

$$
=\cos \omega t
$$

And when $=-1$, then

$$
=-\cos
$$

$$
=\quad+180^{\circ} \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... } 2.30
$$

It isknown from communication theory that bandwidth ( $\mathrm{B}_{\mathrm{if})}$ of modulated AM-DSBSC signal is twice the maximum frequency or bandwidth of the baseband signal $\left(f_{\max }\right.$ or B$)$ and since BPSK is an AM-DSBSC, then it follows thatthe I.Fbandwidth of BPSK scheme = $=2$.
The modulated signal is passed through a bandpassfilter to remove harmonics.Filters in modulator and demodulator set thelimit on bandwidth. In high rate transmission, error also arisesin the demodulator due to pulse overlaps (also called Intersymbol Interference (ISI)), the baseband signal need to be passed through pulse shaping filters to remove the overlaps. This pulse shaping filters are designed to satisfytheoretically Nyquist criterion(see APPENDIX A). Therefore, bandwidth for digital transmission is limited by Nyquist filter criteria on ISI.Relationship between filter bandwidth $B$ and symbol rate $R_{\text {sym }}$ is given by[3]:

$$
=\frac{1+}{2}
$$

Where Ŭ is filter roll-off factor $0 \leq 1$
For BPSK the input data bit rate $R_{b}$ is the modulating (symbol) rate $R_{s y m}$ i.e. =

$$
\therefore \quad=\frac{1+}{2}
$$

$\begin{array}{ll}\text { Since } & =2 \\ \therefore & =2=1+\end{array}$
Bandwidth utilization or spectral efficiency in BPSK is given as

Which has maximum value of one.

## (b) Quadrature Phase-Shift Keying (QPSK):

In this scheme, the phase of the carrier phase is shifted by $90^{\circ}$ to four possible values by the baseband input bit stream $p(t)$. So that the modulated signal is

$$
=() \cos
$$

So that ű, takes values of $/ 4,3 / 4,5 / 4,7 / 4$.
By expansion

The first term of LHS is similar to equation 2.34 or BPSK signal; it is called in-phase or l-channel. The second term is also a BPSK signal, but in quadrature phasewith the carrier; it is called quadrature orQ-channel. Thus a QPSK signal, is a combination of two BPSK signal in quadrature. Such that

$$
=\cos +\sin
$$

Where $p_{i}$ and $p_{q}$ represent binary stream modulating the I-channel and q-channel respectively. Such that

$$
=() \cos
$$

And

$$
\text { = ( ) } \sin \quad \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... } 2.38
$$

Table 2.3Phase angle ű of I- Channel and Q-Channel in QPSK

| $p_{i}$ | $p_{q}$ | $\bar{u}$ |
| :--- | :--- | :--- |
| 1 | 1 | $'^{\prime} / 4$ |
| -1 | 1 | $3^{\prime} / 4$ |
| -1 | -1 | $5^{\prime} / 4$ |
| 1 | -1 | $7^{\prime} / 4$ |

In both signals, a logical 1 corresponds to $p_{i}$ or $p_{q}=+1$ and a logical 0 corresponds to $p_{i}$ or $p_{q}=-1$, as shown in table 2.3.

Figure 2.6 is a block diagram for implementing QSPK scheme. Incoming modulating bit stream $p(t)$ is passed into a serial-to-parallel converter, which splits it into two parts, in-phase $p_{i}$ and quadrature $p_{q}$ streams.Such that bits $p_{i}$ and $p_{q}$ are selected alternately from the input bit stream. The signals are then separately mixed with two orthogonal sinusoidal carriers $\cos \quad-\sin$, thus producing two orthogonal BPSK waveforms which are then combined to produce the QSPK modulation.


Figure 2.6Schematic of QPSK Implementation
Table 2.4 is a phase table for the QPSK and its signal point constellation is shown in figure 2.7

Table 2.4 QPSKImplementation [2].

| 2-bit <br> binary | $\mathrm{p}_{\mathrm{i}}$ | $\mathrm{p}_{\mathrm{q}}$ | QPSK |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| 11 | 1 | 1 | $\cos$ | $\cos \frac{-}{4}-\sin$ | $\sin \frac{7}{4}=\cos$ | $+\frac{-}{4}$ |
| 01 | -1 | 1 | $\cos$ | $\frac{3}{4}-\sin$ | $\frac{3}{4}=\cos$ | $+\frac{3}{4}$ |
| 10 | 1 | -1 | $\cos$ | $\frac{7}{4}-\sin$ | $\frac{7}{4}=\cos$ | $+\frac{7}{4}$ |
| 00 | -1 | -1 | $\cos$ | $\frac{5}{4}-\sin$ | $\frac{5}{4}=\cos$ | $+\frac{5}{4}$ |



Figure 2.7QPSK Signal points [2].
To calculate the spectral efficiency for QPSK, since QPSK is a combination of two BPSK and symbol rate is half of the bit rate ( $R_{\text {sym }}=R_{b} / 2$ ), then using equation 2.23. [2]

$$
\begin{array}{r}
=\frac{1+}{2} \\
\therefore \quad-=\frac{2}{1+} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}
$$

In ideal filter $\mathrm{U}=0$ and $\mathrm{R}_{\mathrm{b}} / \mathrm{B}_{\mathrm{IF}}=2$.
Thus, spectral efficiency QPSK is twice that of BPSK.
In general (to be discussed in chapter 5), for M-PSK the spectral efficiency increases with modulation order.This thesis is aimed to exploithigh spectral efficiency of M-PSK to increase channel capacity.

### 2.5 Probability of Error $\left(\mathrm{P}_{\mathrm{e}}\right)$ in BPSK and QPSK Schemes

To calculate probability of error due to the noise in the received BPSK signal, consider two voltage levels +V and i Vto represent binary 1 and 0 transmitted and let noise voltage received be ( ). Then output voltage of the demodulator for decision making is the sum of the signal voltage $\pm \mathrm{V}$ and the noise voltage $\mathrm{n}(\mathrm{t})$. [6]

$$
\begin{aligned}
& = \pm \quad+\quad . .1 . . . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . . . ~ . ~ . ~
\end{aligned} 2.40
$$

In figure 2.8(a), the two decision thresholds are represented by antipodal signal points $s_{1}$ and $s_{2}$ corresponding to binary 1 and 0 respectively. Such that, whenv> 0 decision is made in favour of $s_{1}$, and when $\mathrm{v}<0$ decision is made in favour of $s_{2}$. An error will occur, when the noise voltage n change sign of v . There are two possibilities for this error to occur: (a) If +V signal is sent at a time nis less than i V , then a wrong decision is madefor negative $v$. (b) If $i \geqslant$ signal is sent at a time $n$ is greater than +V , then a wrong decision is made for positive v .
Therefore, probability of error occurring $\mathrm{P}_{\mathrm{e}}$ is given as:

(a)Antipodal Signal Points [6]

(b)Conditional PDF for $s_{1}$ and $s_{2}$ decision [6]

Figure 2.8Probability Density Function of Antipodal Signal $=\frac{1}{2}<0, \quad+$

$$
+\frac{1}{2} \quad>0 \text {, } \quad-
$$

Since the two events equally likely, it follows

$$
=<0,0 \quad+
$$

$=$ <
The probability of error occurring in the transmission is now reduced to probability of noise voltage greater in wrong direction than the sample value ( $\pm \mathrm{V}$ ). Since the noise is defined to be Gaussian.
The Gaussian PDF for random variable $x$, with mean ©́ôand variance $\mathrm{u}^{2}$ is given as

$$
=\frac{1}{\sqrt{2}}
$$

Consequently applying the Gaussian expression to this case, the two events have conditional probability density functions (PDF) as follows: [6]

$$
\begin{aligned}
& /=\square \quad-\quad \text { é é é é é é é é é é é é é é é é é } 2.46 \\
& /=\square \quad \text { é é é é é é é é é é } . . . . e ́ ~ e ́ ~ e ́ ~ e ́ ~ e ́ ~ e ́ ~ \\
& 2.47
\end{aligned}
$$

Taking the noise component to have zero mean and variance of $\dot{u}^{2}=\mathrm{N}_{\mathrm{o}} / 2$ Although the two PDF overlapped as shown in figure 2.8(b), but for error to occur, the probabilities for the two events are mutually exclusive as shown in the two shaded areas

Thus, given that $s_{1}(+V)$ was transmitted, probability of an error in receiving $s_{1}\left(\right.$ i.e. $\left.v_{0}<0\right)$ isthe integral of its PDF: [6]

By changing of variables such that $=\frac{-}{1}$

$$
\Rightarrow \quad=\quad-\quad-\overline{2}
$$

And differentiating,

$$
=\quad \overline{2}
$$

Also for range of the integration when $=0,=$ -

$$
\therefore \text { 0 }=0,=\underline{2}
$$

$$
\text { And when }=-\infty,=-\infty
$$

$$
\therefore \quad \left\lvert\,=\frac{1}{\sqrt{2}} \quad / \quad \ldots \ldots\right.
$$

Since the PDF is symmetrical about +V then

$$
\left\lvert\,=\frac{1}{\sqrt{2}}\right.
$$

The above expression is a statistical Q-function of $\overline{2 / /}$ so that

Similarly if $s_{2}(-)$ was transmitted, $=-\quad+$, then probability of $>0$ is | and its PDFis a replica to that of |

Since $s_{1}$ and $s_{2}$ are exclusive, and equally likely events,
Then, the average probability of error is

$$
=\overline{2 /} \text { é é é é é é é é é é é é } . .2 .55
$$

This can also be expressed using complementary error function erfc as

A plot $P_{e}$ against $E_{b} / N_{o}$ (in $d B$ ) for BPSK scheme is shown in figure 2.09. It is established in Communication theory that probability of error for QPSK and BPSK schemes are equal, since QPSK is a combination of two orthogonal BPSK


Figure 2.9Graph of Probability of Error $P_{e} V s E_{b} / N_{o}$ for BPSK and QPSK

For high level MPSK scheme the probability for symbol error $\mathrm{P}_{\mathrm{M}}$ is given as [6]

$$
=2 \quad 2-\sin -
$$

Or $=\quad-\sin -\ldots$... ... ... ... ... ... ... ... ... ... ... ... ... ... .. 2.58

Plots of $P_{e}$ versus $E_{b} / N_{o}$ for QPSK, 8-PSK and 16-PSK are shown in figure 2.10. It is important to note that to maintain same $P_{e}$, as modulation level M increases more $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ is required. This is a major disadvantage for high level MPSK scheme


Figure 2.10Probability of Symbol Error $P_{M}$ versus $E_{b} / N_{o}$ in $M-P S K$

### 2.6 Error Control and Coding Gain

One major advantage of digital communications over analog is possibility of improving quality of (corrupted) digital signal received by use of error control codes. The techniques may involve an addition of extra bits for error detection, as in automatic repeat request (ARQ), [8] in which case the receiver request for retransmission when error is detected; or combined error detection and correction, as Forward Error Correction (FEC). In conventional FEC encoding is implemented before the modulation while decoding is implemented after demodulation.

Where error control code is applied, a (measurable or countable) parameter bit error rate (BER) is used instead of $P_{e}$. In uncoded link $P_{e}$ and BER are the same, but in coded link $P_{\mathrm{e}}$ is determined at demodulator output, while BER is determined at decoder output. When error control code is applied to a link, therequired value of / for a certain BER is reduced as shown by the difference in the two plots of figure2.11.


Figure 2.11Probability of Bit Error in Uncoded and Coded BPSK
It is possible using certain conventionalFEC to produce gain in / of up to 3 dB , applying this gain is more convenientthan to increase receiving antenna size by $41 \%$ or transmitter power by $100 \%$.

### 2.07 Spectral Efficiency in Power and Bandwidth Limited Links

The Shannon§̂ link capacity theorem has set limit for error free communication in an AWGN channel

$$
\log 1 \text { / ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...... .2.59 }
$$

It expresses the relationship between the Transmission data rate $R$, channel bandwidth B, and received carrier-to-noise ratio $\mathrm{C} / \mathrm{N}$. [1]

Using the theorem, a ratio of data rate to bandwidthknown as spectral efficiency is formed:
$-\quad \log 1 /$

Therefore from equation 2.60spectral efficiency and received $\mathrm{C} / \mathrm{N}$ are two key parameters that counter balance each other in an AWGN channel. In practice a link is characterized to be limited in power or bandwidth or both.

Using equation 2.33, spectral efficiency can also be expressed in terms of $E_{b} / N_{o}$ as[3]

When spectral efficiency of a link is less one (i.e. $R<B$ ), the link is characterized as power limited, because power is traded for bandwidth. A plot of log / versus / in decibel for power limited link is shown in figure 2.12. The graph shows how $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ (power) is traded for low spectral efficiency. It set a lower theoretical limit on $E_{b} / N_{0}$ at -1.6 dB for any communication in AWGN regardless of spectral efficiency, it is called Shannon̂̂́s limit. [4]

In practice some high gain FEC such as Turbo coding allows links to approach $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ value of -0.9 dB that is just 0.7 dB above Shannon limit.[3]

In case of $R>B$, the link is characterized as bandwidth limited, here bandwidth is traded for power. The spectral efficiency is always greater than one; plot of log / versus / in decibel is shown in figure 2.13. As the ratio $R / B$ increases (i.e. reduced bandwidth) the value of $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ (power) is required to achieve practical communication increases asymptomatic, simply put for higher spectral efficiency more power is required.

The downlink of LEO satellite is both power and bandwidth limited. This work seeks to apply high spectral efficiency of MPSK modulation schemes and harness power from high gain error control coding to optimise data rate.


Figure 2.12Plot $E_{b} / N_{o}$ Versus $\log _{2}(R / B)$ for Power Limited link $(R<B)$


Figure 2.13Plot of $E_{b} / N_{o} V s \log _{2}(R / B)$ for Bandwidth Limited link ( $R>B$ )

### 2.8 Reviews on Past Publications onOptimisation of LEO Downlink

Researches are still on-going on optimization of data communication between LEO satellites and Earth stations. While the results of some of these researches arecommercial proprietary that remains exclusive to the sponsoring organisations, those that have been published in the past IEEE publications focusedin the followings areas:

- Adaptive Variable Transmission Rate.[7] (2003)
- Hybrid-ARQ Communication protocol. [8](1997)
- Adopting Raleigh and Rician Model for DownlinkChannel.[9](2003)


### 2.8.1 Adaptive Variable Data rate

In a paper published in IEEE 2003 by M.A Matar titled đhroughput/Channel Capacity Improvement Issues for LEO satellite downlinkô [7] An adaptive variable data transmission rate was proposed to counter the wide variation of free space loss during the communication time. This approach seeks to apply constant SNR by varying the transmission rate according to the satellite orbiting dynamicsto maintain fixed BER.The author substituted for free space loss $L=4 \pi S / \lambda$ in the link
equation 2.23:

$$
\frac{E}{N}=\frac{\operatorname{EIRPLG} \lambda / 4 \pi S L}{T k R}
$$

$$
\frac{\mathrm{E}}{\mathrm{~N}}=\frac{\operatorname{EIRP~L}}{4 \pi S \mathrm{R}} \mathrm{G} / \mathrm{T} \quad \lambda / 4 \pi \mathrm{~kL}
$$

During communication time, it is only the satellite range $S$ that varies while other parameters in the link equation 2.62are fixed. It is therefore, power wastage to apply same $\mathrm{E} / \mathrm{N}$ to counter both the minimum and maximum free space losses. Rather, the data rate $R$ canbe increased while the free space loss is decreased as the satellite rises from the horizon. Such that, the term $S^{2} R$ is constant, and therefore all terms in equation 2.62 remain constant during communication time. A fixed value of $E_{b} / N_{o}$ is kept at certain threshold to guarantee the required BER.

Such that:

$$
\mathrm{S} R=\text { constant }=1
$$

In figure 2.14, at Earth station B, the satellite $A$ in orbits subtends an earth angle ${ }^{u}$ at $C$. This earth angle is a function of time as in equation 2.64

B


A
d


Figure 2.14Geometry of Satellite-Earth Angular Relationship.
Using the triangle $A B C$ in figure 2.14, the satelliterange $A B=S$ is function of time given by:

$$
S t=R+R+h-2 R R+h \cos \phi t
$$

To maintain equation 2.64 an Adaptive Rate Transmission (ART) process was proposed by adopting a strategy of varying symbol duration T with time, so that

$$
\sigma \mathrm{S}=\frac{1}{\mathrm{R}}=\mathrm{T} .
$$

Such that

$$
\mathrm{Tt}=\sigma \mathrm{S} \mathrm{t}
$$

Therefore, volume of data downloaded or throughput TP during the communication time is obtained as

$$
\mathrm{TP}=\frac{\mathrm{dt}}{\mathrm{~T}(\mathrm{t})}=\frac{\mathrm{dt}}{\sigma \mathrm{~S} \mathrm{t}}
$$

For a LEO altitude of $h=650 \mathrm{~km}$ and $\mathrm{R}_{\mathrm{E}}=6378.14 \mathrm{~km}$

$$
\mathrm{R}+\mathrm{h} \cong 1.21 \mathrm{R}
$$

$$
\text { And if } \simeq \cong \cong 1
$$

Then equation 2.66 reduces to

The value of $\mathrm{TP}_{\mathrm{var}}$ is obtain by evaluating the above integral over the communication period.

Inconclusion, the proposal yields throughput improvement compared to a constant rate throughput $\mathrm{TP}_{\text {const }}$ as

$$
\frac{\mathrm{TP}}{\mathrm{TP}}=4.7 \text { to } 6.7 \mathrm{~dB}
$$

### 2.8.2 Optimisation Through Hybrid-ARQ

This research work was published in IEEE communications Transaction of 1997 [8] by a group of research academics; VY Chu, Dr. W, Sun and M.N Sweeting of the Centre of Satellite Engineering Research in University of Surrey, United Kingdom. The research was conducted to upgrade selective repeat SR-ARQ protocol, one of the communication protocol applied at the centre.

The SR-ARQ protocol is a form of AX. 25 (Amateur form of X. 25 - radio packet transmission adopted to layer 2 of OSI protocols) adapted for advanced LEO small satellite communication. The satellite transmits message in form of packet broadcast to be received by visible Earth stations. Not all packets that make up the message will be received. Each missing packet represent a đoleô which can be filled through retransmission đoole requestô made by an Earth station. This form of ARQ provided a robust link in the dynamic LEO downlink and near optimum throughput. However, when the retransmission requestbecomes high, as result of low margin of $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$, it slow down the throughput.

The retransmission requests can be reduced by inclusion of a forward error correction code (FEC) to correct the most frequent error pattern and the retransmission (ARQ) correct the less frequent error pattern.A hybrid-ARQ system is thus formed, so that retransmission requests are minimized, thereby harnessing communication time optimally. The link data throughput is improved and the solution is cost effective for low power margin and small Earth station terminals.Earlier some extensive researches were carried-out on hybrid-ARQ schemes.

1) In type-I hybrid, the data packets are encoded for error detection and correction. A receiverattempts to correct an erroneous packet, but if uncorrectable error pattern occurs, the packet is discarded and request for same packet is made. This scheme is suitable for communications systems that experience fairly constant and low noise level. In the event of unpredictable noise levels, the throughput degrades when the noise is high,but when the noise is relatively low, the extra parity bits represent useless overhead.
2) In a type-Il hybrid redundancy symbols are transmitted only when required. However, the type-II hybrid has the upper limit of providing only two codes rates.
A new packet combining scheme, was proposed by the group thatmaintains high throughputin channels that exhibit wide range of noise levels. This is achieved through adaptive packet combining scheme. The underlying principle of packet combining is to form increasingly reliable estimate by combining each erratic packet with its predecessor, until the resultant combined packet can be reliably decoded. The repeats are not necessarily the message, but coded derivatives at different level.
The two combined schemes were proposed in the paper, these are code combining and diversity combining schemes.
In code combining scheme as presented by Kallel (IEEE 1990 Transaction on communications), code $\mathrm{C}_{0}$ is an ( $\mathrm{n}, \mathrm{k}$ ) block code used for error detection and $\mathrm{C}_{1}$ is a $(2,1, \mathrm{~m})$ convolutional code for error correction as shown in figure 2.15.
Code $C_{0}$ is an ( $n, k$ ) block code used for error detection, $C_{1}$ is the $(2,1, m)$ convolution code for error correction. A message is first encoded with block code $\mathrm{C}_{0}$ into a code word $\mathrm{I}(\mathrm{X})$, then forming sequences $\mathrm{P}_{1}(\mathrm{X})$ and
$P_{2}(X)$ using generator polynomial of $C_{1}, G_{1}(X)$ and $G_{2}(X)$. Sequences $P_{1}(X)$ and $P_{2}(X)$ are sent alternately.


The receiver combines all the received sequences with all its repeated copies until the message is decoded error free.
In diversity combining scheme, punctured convolution code is used for both error detection (retransmit request) and correction. The punctured
code attempt to correct an erroneous packet, if the difference in the path (trellis correction path) metrics between a surviving path and best nonsurviving path falls below certain threshold the survivor path is declared unreliable. A multiple of unreliable paths (packets) are combined togenerate single retransmit request and in response a packet of the same length is retransmitted for correction of the unreliable packets.

Although there is no metric to measure the level of optimisation achieved in their research, its novelty lies in the attempts to address the recurrent overhead bits in FEC which becomes redundant during the time the channel is less noisy. The communication channel is dynamically characterised and adaptive retransmit request (ARQ) applied in a process that guarantees optimum throughput.

### 2.8.3Adaptive Communication System for Algerian LEO Satellite

Algeria like Nigeria launched its first remote sensing satellite into LEO in 2003 [9]. In the design proposed for future Algerian LEO satellite, the authors examined some critical issues involved in the communication channel. As most Earth stations are located in cities and the satellite spent a lot of time at low elevation angle,the researchers chooses to optimize communication time by inclusion of low elevation angle, where the channel is mostly affected by multipath fading.

The communication channel is thus, characterized to have maximum free space loss, multipath fading, Doppler effect and white Gaussian noise. The researchers therefore modeled it as Rician/Rayleigh channel.

To counter the dynamic effects of fading, use of Turbo Codes was proposed by the authors. The Turbo codes was developed in 1993 by Claude Berrou, it has excellent gain potentials of improving C/N to 0.7 dB from Shannon's theoretical limit. The codes are made up of parallel concatenated convolution codes, it. Its dxey concept is to use a set of decoders working in a feedback connection where each decoder accepts an estimate of the Log Likelihood Ratio (LLR) of each information bit at its input, and improves the accuracy of this estimate. The LLR is a measure of total information about an information bit. This information comes from two sourcesé part of it from the received data bit, and is called the intrinsic information. The other part of this
information comes from the decoder and is called extrinsic information. The extrinsic information is passed between decoders whereas the intrinsic is not. The operation iterates a number of times in the feedback loop of the decoders, and finally a hard decision is made on each input bit.ô

An adaptive M-QAM modulation scheme was proposed for improved spectral efficiency and to counter wide variation in free space loss. The strategy adopted is as follows: The $\mathrm{C} / \mathrm{N}$ range is divided into $\mathrm{N}+1$ fading and loss regions, and the constellation size $M_{i}(i=1,2 e ́ N)$ is assigned to the nth region. When the received $\mathrm{C} / \mathrm{N}$ is estimated to be in the nth region, a $M_{i}$-QAM constellation size is transmitted, thus adaptive discrete rate (ADR) multilevel modulation scheme is used.

The turbo encoder is made to have adaptive code rates that are also applicable to the $\mathrm{N}+1$ fade regions. Thus, the two schemesforms turbo coded adaptive modulator schemeADR-MQAM), that is implemented as shown in table2.5.

Table 2.5AdaptiveDiscrete Rate in Fading Regions

| Fading <br> Regions <br> N |  | Code <br> Rate | Spectral <br> Efficiency | Constellation <br> Size |
| :--- | :--- | :--- | :--- | :--- |
| 1 |  | $1 / 2$ | 1 | 4-QAM |
| 2 | $2 / 3$ | 2 | 8-QAM |  |
| 3 | $3 / 4$ | 3 | 16-QAM |  |
| 4 | $4 / 5$ | 4 | 32-QAM |  |
| 5 | $5 / 6$ | 5 | 64-QAM |  |
| 6 |  | $6 / 7$ | 6 | 128-QAM |
| 7 | $7 / 8$ | 7 | 256-QAM |  |
| 8 | $8 / 9$ | 8 | $512-Q A M$ |  |

The average bit error rate in a Rayleigh fading channel was quoted as:

$$
P=\frac{2 \sqrt{M}-1}{\overline{M \log M}} 1-\frac{3 \bar{\gamma} \log M}{2 M-1+3 \log M}
$$

Where $\bar{\gamma}$ is the average $\mathrm{C} / \mathrm{N}$ ratio over period of M constellation. This is applied to the ADR-MQAM techniques.

And BER of a coherentMQAM over an additive white Gaussian Noise (AWGN) channel as given by (L. Hanzo and W.T Webb, 2000):

$$
B E R=\frac{4 \sqrt{M}-1}{\sqrt{M} \log M} Q \quad \overline{3 \gamma}
$$

Here $\gamma$ is the carrier to noise ratio.
The authors concluded that by adopting the Rayleigh fading channelmodel on a LEO satellite link and applying the ADR-MQAM techniques, for average BER approach $10^{-6}$, the ADR-MQAM has more than 20dB power gain over a non-adaptive modulation.

## CHAPTER THREE TRELLIS CODED MODULATION AND THE CONCEPTUAL MODEL

### 3.0 Introduction

As mentioned in chapter two that transmission impairments introduces error in digital communication, which can be corrected with error control coding. In general thisis achieved with addition of overhead bits, which in turn reduces datathroughput. To maintain same throughput after coding is applied, the transmission rate has tobe increased, which translate to demand for more bandwidth. In a bandwidth limited channel, like the LEO satellite downlink, the alternative is to use a more bandwidth efficient modulation scheme.

When Quadrature Phase Shift Keying (QPSK) is used to transmits 2 information bits per Hz and to maintained this same information data Throughput when optimum code rate of $2 / 3$ is applied, therequirement for bandwidth will increase by factor of $3 / 2$. If however to avoid the demand for more bandwidth, an 8-PSK is used to transmit at $3 \mathrm{bps} / \mathrm{Hz}$, so that the original 2 information bits $/ \mathrm{Hz}$ is maintained, howeverthe Euclidean distance in signal constellation of 8-PSK is closer than in QPSK and if same Bit Error Rate (BER) is to be maintained then more power isrequired on 8-PSK.

In this chapter it would be shown how conventional error coding such as convolution coding can be used to compensate for the power penalty and its limitation.[5]It would be shown that to generate sufficient gain to compensate for the penalty using conventional coding system requires large size constraint length on convolution encoders or large block size on block encoders.

The alternative is to use a modulation scheme that increases the distance between possible coded sequences. This process is called Trellis Coded Modulation (TCM) developed by Ungerboek et el in 1982, it combine coding and modulation scheme concurrently. The process is implementable on simple convolution codes using the principle of set partitioning on signal points of multilevel or multiphase digital modulation.

### 3.1 Euclidean Distance in MPSK Scheme

Euclidean distance is the shortest distance between any two points i.e straight line distance unlike Hamming distance which is a digital metric that measures the number of difference between two sequences, Euclidean distance is an analog concept extended to digital signal constellation points [10]. Figure 3.1 (a) and (b) are two constellations of signal points for QPSK and 8-PSK respectively. The signal points are located each on a circle of radius equal to unity representing maximum amplitude of the signal.

$\mathrm{S}_{6}$
(a)QPSK
(b) 8-PSK

Figure 3.1Euclidean Distance in QPSK and 8-PSK Schemes.
The position of each point on the constellation is a combination of the amplitude and phase. The distances marked $d_{1}, d_{2}, d_{3}$ é .. are the Euclidean distances for signals points $s_{1}, s_{2}, s_{3} e ́$ referenced to $s_{0}$ respectively, normally expressed in squared form as Squared Euclidean Distance (SED). The smallest of these distances is called the Minimum Squared Euclidean Distance (MSED) represented as On QPSK constellation:

$$
=2 .
$$3.1

And on 8-PSK constellation:

$$
=\sin \overline{8}=2-\sqrt{2}=
$$

Other SED on the 8-PSK constellation are

$$
\begin{aligned}
& =2 \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .3.3 } \\
& =2 \text { + } \sqrt{2} \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... .3. }
\end{aligned}
$$

And

$$
=4 .
$$

It should be noted that both SED and MSED are functions of radius of the circle or the signal amplitude.
The ability of a demodulator to distinguish a signal pointfrom its neighbors is expressed as probability of bit error $\left(\mathrm{P}_{\mathrm{e}}\right)$ of the modulation scheme, which is sometimes expressed as a function of the MSED.[12]
~ /
Where $\mathrm{u}=\mathrm{N}_{0} / 2$. ( $\mathrm{N}_{0}$ is the noise power).

### 3.2 Convolution Coding Technique

Convolution coding involves logical combination of present and previous inputs to generate a coded output bit, this is demonstrated in a simple convolution encoder of code rate $=1 / 3$ (input bit $k=1$, output bit $n=3$ ) shown in figure 3.2, it has 3 arrange in stages ( $L=3$ ), and 3 modulo-2 adders as the 3 output generators. The 3 generators $g_{1}, g_{2}$ and $g_{3}$ are connected to the cascaded shift registers according to 3 logic equations, given as: $\quad g_{1}=[101], g_{2}=[011]$ and $g_{3}=[111]$.


Figure 3.2A Simple 1/3-Rated Convolution Encoder
Output of the encoder depends on present input bit in the first register, and two previous inputs shifted and stored in the second and third registers- LSB stored in the third register.
The current states of the first two registersare critical in determining the next state of the three registers, if these states are labeled in boxes as $a[00], b[01], c[10]$ and d[11], then their transition to the next states can be specified by an arc for a new state and loop for same state. The Input k, the transitions and the possible next states are given below:


Thus, the encoder is a finite state machine in which all the registers possible states and the output can be drawn. The Operation of the encoder is graphically presented in figure 3.3. Transition from one state to another is represented by a long arc connecting the two boxes and a loop signifies transition to same state. The dotted arc or loop represent transition when input bit $\mathrm{k}=0 /$ encoder output and solid arc/loop represent transition when input bit $k=1 /$ encoder output.
$\mathrm{k}=0 /$ encoder output $=000$


Figure 3.3Transition Diagram for a1/3-Rate Convolution Encoder

The operation is summarized in transition table 3.1 and output table 3.2.

Table 3.1State TransitionTable of a 1/3-Rate Convolution Encoder

| Current state | Next state if input $\mathrm{k}=1$ | Next state if input $\mathrm{k}=0$ |
| :--- | :--- | :--- |
| 00 | 10 | 00 |
| 10 | 11 | 01 |
| 11 | 11 | 01 |
| 01 | 10 | 00 |

Table 3.21/3-Rate Convolution EncoderState - Output Table

| Current State | Output if input $\mathrm{k}=1$ | Output if input $\mathrm{k}=0$ |
| :--- | :--- | :--- |
| 00 | 101 | 000 |
| 10 | 110 | 011 |
| 11 | 001 | 100 |
| 01 | 010 | 111 |

### 3.2.1 Trellis Diagram

A Trellis diagram is another graphical presentation oftransitions and output as input are clock in, thisis shown in figure 3.4[4]. The diagram specifies all the possible states of the $1 / 3$ rate convolution encoder on the vertical axis and clock timing on the horizontal axis.
a 00
b 01

C 10
d 11


Figure 3.4Trellis Diagram for a 1/3 Convolution Encoder

Transitions are denoted by straight line (solid line for $k=1$ and dotted line for $\mathrm{k}=0 \mathrm{bit}$ ) between two states, and outputs are indicated on top of the Transition lines. Thetime axis is scaled to correspond to clocking time of input $k$.
At $t=0$ if the registers are at state $=00$, when input bit $k=1$, the transition is to state $\mathrm{c}[10\}$ and when $\mathrm{k}=0$,the transition is remain in state $\mathrm{a}[00]$.
At $t=1$ depending on the present state $a[00]$ or $\mathrm{c}[10]$ (i.e depending the previous input ) and present input, there are four possible transitions. these are: [a] to [a] or[a] to [c] and[c] to [d] or [c]to [b].
At $t=2$ depending on the present state (the registers have transited to any of the four possible states), consequently there are eight possibilities and the process goes for $t=3$,4é é é é é $N$.
If the above Encoder is use to code the information sequence 101001. Using the above procedure for each clock time, the encoding process is as shown in figure 3.5.


|  | $t=0$ | $t=1$ | $t=2$ | $t=3$ | $t=4$ | $t=5$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $t=6$ |  |  |  |  |  |  |
| INPUT | 1 | 1 | 0 | 1 | 0 | 0 |
| OUTPUT | 101 | 110 | 100 | 010 | 011 | 111 |

Figure 3.5 Coding Process of 1/3-rated Convolution
The encoder output produces three bits for each clock input bit, the coded output $=101110100010011111$.
In general, a k/n-rate convolution encoder, can be generalized as shown in figure 3.6, k input bits are shifted into a block of k registers at each
clock time, $L$ blocks of $k$ registers are connected, so that an input is stored and relevant to the output for $L$ clock times ( $L$ is the encoder constrain length). Series of $k$ bits in $L$ blocks are combined or convoluted using n number of exclusiveï OR gate. Connection EX-OR gates to the registers are defined by sequence generator for each gate. The output $n$ bits depend not only on the most recent input block, but also on contents stored in (L-1)k registers. Therefore, number of transition states in this encoder is $2^{(\mathrm{L}-1) \mathrm{k}}$.


Figure 3.6Convolution Encoder of L Blocks of $k$-stage Shift Registers.
The connections between exclusive-OR gates to Lk registers are not specific, but defined by convoluted logics ofthe generators $\left[g_{1}, g_{2}, \ldots g_{n}[5]\right.$.

### 3.2.2Coding Gain in Convolution Coding

Coding gain is a measure of BER improvement or reduction of $\mathrm{C} / \mathrm{N}$ due to application of coding. It is the ratio of $\mathrm{C} / \mathrm{N}$ of coded to that of uncoded link transmitting same information bit at the same BER. This expressed as:[10] = $\frac{1}{/}$... ... ... ... ... ... ... ... ... ... ... ... ... ........ ... .... . 3.7

Where and are energy per symbol for coded and uncoded system respectively. Coding gain is also deduced in some texts as.[5]

$$
=
$$

Where is the squared minimum Euclidean distance in an uncoded constellation and the term is called the free squared
Euclidean distance, which is the smallest distance between allowed codedsequences this is taken as the distance between an all zero sequence and the one that diverted, and then re-merged with it (as in figure 3.5). This is based on the principles of viterbi decoding algorithm of convolution codes, in which erroneous diversion of path due to received error is corrected (i.e. remerge) after few subsequent transitions in the decoding process.
To illustrate the above principle, consider a $2 / 3$-rate convolution encoder (with 3-bits output applied to an 8-PSK scheme) shown in figure 3.7.


Figure 3.72/3-Rate Convolution Encoder
The uncoded 2-bit inputs ismapped into a QPSK constellation of radius $=1$, while the coded 3-bit outputs is alsomapped into an 8-PSK constellation of same radius. The squared minimum Euclidean distances of the uncoded input (on the QPSK) marked in figure 3.8(a) as = 2(equation3.1)

(a) 2 bits input uncoded QPSK(b) 3bits output coded 8-PSK

Figure 3.8 Mapping 2-bits and 3-bits Sequences


Figure 3.9Trellis of a $2 / 3$ Convolution Code and Coding Gain
Trellis diagram of this coding is given in figure 3.9(a). The squared Euclidean distance (on the 8-PSK constellation) from an all zero path (output $\mathrm{s}_{0} \mathrm{f} 000$ ) to all possible transition paths are recorded adjacent to each output.
To determine of the code, a path with smallest total squared distance, which diverts from an all zero (000) and remerges after successive transitions is selected. As shown in figure 3.10(b), at state 00 , the path that transited to state 11 has squared distance of 3.414 and returns to state 00 with squared distance of 0.586 has the smallest total squared distance of $3.414+0.586=4.0$, all other possible transitions from state 00 and back to 00 have total squared distance greater than 4. In this encoder therefore

$$
=3.414+0.586=4.0 .
$$

Then, from equation 3.9 coding gain in dB of $2 / 3$ ï rate convolution encoder can be written as:

$$
\text { Coding gain }(\mathrm{dB})=10 \log
$$

$$
=10 \log .
$$

From equations 3.1 and 3.10

$$
=10 \log \frac{4.0}{2.0}=3.0
$$

Thisis happened to be the maximum theoretical coding gain of convolution coding on 8-PSK scheme.[5]

### 3.3 Set Partitioning Theory

This is a process of partitioning a signal pointsconstellation into smaller congruent subsets, such that theminimum Euclidean distance ( $\mathrm{d}_{\text {min }}$ ) is increased with each partitioning.
An 8-PSK signal constellation of unit radius shown in figure 3.10 is to be partitioned. At first level the eight signal points are divided into two equal subsets $A_{0}$ and $A_{1}$ so that the minimum distance is increased
from $=2-\sqrt{2}$ to $=\sqrt{2}$
In the second partitioning each of the two subsets is further divided into two equal subsets each containing two signal points, so that there are four subsets $B_{0}, B_{1}, B_{2}$ and $B_{3}$. This has increased the minimum distance to $=2$.

In third partitioning which in this case is the last, the signal points are divided into eight points $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$ and $\mathrm{C}_{7}$ where each subset contains only one signal point.

The Trellis Coded Modulation make use of the increase in minimum Euclidean distance with each partitioning, to reduce the probability of error (thus providing apparent power gain). The coded sequences are mapped into each partitioning point to form TCM constellation according to the rules spelled out by Ungerboecket el to be presented in section 3.5[4]


Figure 3.10 Set Partitioning of an 8-PSK signal points

### 3.4 Trellis Coded Modulation Scheme

In Trellis Coded modulation (TCM) the two functions Trellis (convolution) coding and Constellation mapping (for multilevel or multiphase modulation) are performed concurrently[5].Duringsymbol transition, the TCMmake use of transition constrain in convolution coding to map(set partition) the allowable output intoconstellation pointswith maximum Euclidean separation. In MPSK mapping this maximum Euclidean separation is $180^{\circ}$ as shown in figure 3.10.

The block diagram implementation of TCM is shown in figure 3.11, in each case, the size of output constellation is twice the input size.From uncoded to coded constellation, TCM is therefore viewed as system for constellation upgrade [10]. The TCM produces coded QPSK from uncoded BPSK, coded 8-PSK from uncoded QPSK, and coded 16-PSK from uncoded 8-PSK etc.Convolution coding is more readily applicable to TCM than Block coding because of the availability for optimum soft decision decoding algorithm (Viterbi)) of the former.[4]

As the constellation expands the symbol size increases, this implies increased throughput. Although, Euclidean separation between the symbols becomes smaller, but selective separation of the symbols enhances the performance.


Uncoded QPSK

(b) QPSK to TCM /PSK

Uncoded 8-PSK


Figure 3.11Examplesof Trellis Coded Modulation [10]
A general block diagram for TCM implementation is shown in figure 3.12[4].


Figure 3.12General Diagram of Trellis Coded Modulation Scheme
An input block symbol $k$ length is broken into two sub-blocks $k_{1}$ and $k_{2}$, such that $k=k_{1}+k_{2}$, The sub-block $k_{1}$ is encoded into $n$ bits by a convolution encoder and the $k_{2}$ sub-block is left uncoded. The encoded $n$ bits are used to select a subset from $2^{\text {n }}$ set partitions by the constellation mapper, while the uncoded $\mathrm{k}_{2}$ bits are used to select a signal point among $2^{k 2}$ signal points in each of the $2^{n}$ set partitions. By choosing $n$ $=k_{1}+1$ and $k_{2}=1$. Ungerboek et el, has shown that with a simple encoder and a mapper that doubles the constellation points ( $M=2^{k+1}$ ), coding gain between 3 and 6 dB can be achieved.
With output constellation of $M=2^{k+1}=2^{n}$ it implies that code rate of $k /(k+1)$ is applied, this is optimum since only one overhead coding bit is added for all of $k>0$.
TCM is therefore considered to be applicable in throughput optimization to links that are both bandwidth and power limited, like the LEO downlink.

### 3.4.1 Implementation of TCM/8-PSK

Consider a simple encoder diagram on figure3.13(a) in which the input $k$ is divided into two such that $k=k_{1}+k_{2}=2$, so that $k_{1}=1, k_{2}=1$. The input $k_{1}$ is fed into a simple $1 / 2$-rate convolution encoder whose outputs are $\mathrm{c}_{1} \mathrm{c}_{2}$. While the other input $\mathrm{k}_{2}$ is left uncoded $\mathrm{asc}_{3}$.

Transition diagram for the convolution encoder is shown in figure 3.13(b), from each current state on the registers $S_{1} S_{0}$ there two possible transitions and two possible outputs depending on the value of inputk ${ }_{1}=0$ or 1 . The operation is described as follows:
(i) At current state of $\mathrm{S}_{1} \mathrm{~S}_{0}=00$, when $\mathrm{k}_{1}=0$ then output $\mathrm{c}_{2} \mathrm{C}_{1}=00$ or $\mathrm{B}_{0}$ and next state of the registers remains at 00 ; but when $\mathrm{k}_{1}=1$ the output $\mathrm{C}_{2} \mathrm{C}_{1}=10$ or $\mathrm{B}_{2}$ and next state of the encoder is 10 .


Figure 3.13A Simple TCM Scheme and State Transition
(ii) At current state $\mathrm{S}_{1} \mathrm{~S}_{0}=10$, when $\mathrm{k}_{1}=0$ then the output $\mathrm{C}_{2} \mathrm{C}_{1}=01$ or $\mathrm{B}_{1}$ andnext state of the registers $\mathrm{S}_{1} \mathrm{~S}_{0}=01$; but if $\mathrm{k}_{1}=1$ thenoutput $\mathrm{C}_{2} \mathrm{C}_{1}=11$ or $B_{3}$ and next state of the registers $S_{1} S_{0}=11$.
(iii) At current state $\mathrm{S}_{1} \mathrm{~S}_{0}=01$, when $\mathrm{k}_{1}=0$ then the output $\mathrm{C}_{2} \mathrm{C}_{1}=10$ or $\mathrm{B}_{2}$ and next state of the registers $S_{1} S_{0}=00$;but if $k_{1}=1$ then output $\mathrm{c}_{2} \mathrm{C}_{1}=00$ or $B_{0}$ and the next state of the registers $S_{1} S_{0}=10$.
(iv) At current state $\mathrm{S}_{1} \mathrm{~S}_{0}=11$, when $\mathrm{k}_{1}=0$ then the output $\mathrm{c}_{2} \mathrm{C}_{1}=11$ or $\mathrm{B}_{3}$ and next state of the registers $\mathrm{S}_{1} \mathrm{~S}_{0}=10$; but if $\mathrm{k}_{1}=1$ then output $\mathrm{C}_{2} \mathrm{C}_{1}=01$ or $B_{1}$ and next state of the registers remains at $S_{1} S_{0}=11$.

Table 3.3 State Table for a Simple TCM

| output | $\mathrm{c}_{2} \mathrm{C}_{1}$ | $\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ |  |
| :--- | :--- | :---: | :---: |
|  |  | $\mathrm{C}_{3}=0$ | $\mathrm{c}_{3}=1$ |
| $\mathrm{~B}_{0}$ | 00 | 000 | 100 |
| $\mathrm{~B}_{1}$ | 01 | 001 | 101 |
| $\mathrm{~B}_{2}$ | 10 | 010 | 110 |
| $\mathrm{~B}_{3}$ | 11 | 011 | 111 |

A TCM is formed when the outputs are combined in a sequence $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ such that $\mathrm{C}_{3}$ is the most significant bit (MSB). In which case, each subsetc $_{2} \mathrm{C}_{1}$ produces two possible TCM outputs depending on the value of $\mathrm{C}_{3}$ as shown in table 3.3.


Figure 3.14Mapping of TCM/8-PSKOutput $\left(c_{3} c_{2} c_{1}\right)$ in a Constellation
If these two outputs are mapped into an 8-PSK constellation separated at $180^{\circ}$ as in figure 3.14, then possibility of error is reduced. The advantage of TCM in reducing error in this case is that, the Euclidean distance between within a subset $\mathrm{C}_{2} \mathrm{C}_{1}$ (output of convolution encoder) has been increased from $=\sqrt{2}$ in figure 3.9(a) to $==2$ in figure 3.9(b), under same average power.
The operation of the simple TCM, as a whole is shown in state transition diagram of figure 3.15.On the left hand side are the present states of the two registers $\mathrm{S}_{1} \mathrm{~S}_{0}$ before the arrival of the present input $\mathrm{k}_{1} \mathrm{k}_{2}$. On the right hand side are the outputs for each possible transition. There two possible transitions to same state from one state, which are represented as twoparallel lines (solid and broken). The most significant bit (MSB
$\mathrm{c}_{3}=\mathrm{k}_{2}$ ) representing the uncoded bit is used to select one of the two parallel transition.
In the trellis diagram shown, transitions from a stateare restricted to two next states only, it is this restriction that the TCM uses for mapping the outputc $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ as in figure 3.14.
current statelnput Ouput
Next state
$\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{k}_{2} \mathrm{k}_{1} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~S}_{1} \mathrm{~S}_{2}$


Figure 3.15Trellis Diagramfora Simple TCM Scheme
The signal points in set partition are optimally assigned to trellis transition path according to three heuristic rules stated by Ungerboeck et el, these are: [4]

1. Use all subsets with equal frequency.
2. Transition originating from the same state or merging into same state are assigned subsets that have a single parent from the preceding stage in set partition. In the above case $\left\{\mathrm{B}_{0}, \mathrm{~B}_{2}\right\}$ and
$\left\{B_{1}, B_{3}\right\}$ are assigned to quadruples parent as $A_{0}$ and $A_{1}$ respectively, where the minimum Euclideanis $=\sqrt{2}$.
3. Parallel transitions, when they occur(characteristic of 4 state transition), are assigned signal points separated by maximum Euclidean distance . = 2. In the above case $\mathrm{B}_{0}=\left\{\mathrm{C}_{0}, \mathrm{C}_{4}\right\}$, $\mathrm{B}_{2}=\left\{\mathrm{C}_{2}, \mathrm{C}_{6}\right\}, \mathrm{B}_{1}=\left\{\mathrm{C}_{1}, \mathrm{C}_{5}\right\}$ and $\mathrm{B}_{3}=\left\{\mathrm{C}_{3}, \mathrm{C}_{7}\right\}$ corresponds to parallel transitions.

### 3.4.2Coding Gain in TCM

Coding gain inTCM is determined as in section 3.5 using equation 3.5. For the 2/3- rated TCM, the smallest free squared Euclidean distance $d^{2}$ free obtained using figure 3.16. Paths that diverted from path 000 and then remerged are:
(a) Transition path with output=100 parallel to path with output= 000 diverted at $\mathrm{t}=0$ and merged at $\mathrm{t}=1$, Squared Euclidean distance between 100 and $000=4$.
(b) Transition paths with output=010 diverted from path with output = 000 at $t=0$ to state $=10$ at $t=1$, at squared distance of $\quad=2$; then from state $=10$ at $t=1$ it transited to state 01 at $t=2 w i t h ~ o u t p u t=001$ which is at squared distance of $=0.586$ from output $=000$; it then transited from state 10 to state 01 at $t=2$ with output= 010 ; which finally transited from state 01 to state 00 at $\mathrm{t}=3$ with output $=$ 001, at squared distance of $=2$ where merged with output $=$ 000. Therefore total squared distance is $+2=0.586+4=$ 4.586.


Figure 3.16Minimum Distance Transition Path in a TCM Scheme
In this case,the parallel transition path with output $=100$ has the smallest total squared Euclidean distance of $=4$;
$\Rightarrow \quad=4$ é é é é é é é é é é é é é é é é é é é é é é é é é 3.11
Therefore by using equation 3.9 ,coding gain on 3 bits coded TCM/8-PSK relative to2 bits uncoded QPSK where $=2$ is given by:

$$
\begin{aligned}
&=10 \log \\
&=10 \log \frac{4}{2}=3.0
\end{aligned}
$$

This 3 dB gain can be seen to be limited by the distance of the parallel transition, henceif the parallel transition is eliminated by increasing the number of transition state beyond 4 states, higher gain could be realized.

### 3.4.3High GainTCM/8-PSK Schemes

## (i) 8-State Transitions

When systematic feedback is applied to a $2 / 3$ ï rate TCM,the number transition states increases to more than four states, thereby eliminating the parallel transitions [4]. A systematic feedback 8-PSK/ TCM isshown infigure 3.17 , with three shift registers $\left(\mathrm{S}_{2}, \mathrm{~S}_{1}\right.$ and $\left.\mathrm{S}_{0}\right)$ placed along the feedback path.


Figure 3.17Systematic Feedback of an 8-State on 8-PSK TCM
The input $k_{1} k_{2}$ have unrestricted possible combination, but the bits output $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ are restricted by $\mathrm{c}_{1}$, which depends on the state $\left(\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}\right)$ of the three registers. The next state or transition of the registers is turn restricted by modulo-2 combination of the input $k, k_{2}$ and individual previous state of the registers connected. In this case the state of each register determines the transition and the output.

For each current state of registers $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$, there is an input-output ï next statetable one output only (thus eliminating the parallels). Since there are 8 possible state of $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ theseare shown in table 3.4(a-h).

Table 3.4Transition Tables for8-State Feedback TCM/8-PSK
(a) Current State $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=000$ (b) Current State $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=001$

$\left.$| Inputk <br> 1 |
| :--- | :--- | :--- |
| $\mathrm{k}_{2}$ |${$|  Output  |
| :--- |
| $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ |$}^{000} 1000$| Next State |
| :--- |
| $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ | \right\rvert\,


| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\quad \mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 001 | 100 |
| 10 | 011 | 110 |
| 01 | 101 | 101 |
| 11 | 111 | 111 |

c) Current State $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=010$
(d) Current State $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=011$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 001 |
| 10 | 010 | 011 |
| 01 | 100 | 000 |
| 11 | 110 | 010 |


| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 001 | 101 |
| 10 | 011 | 111 |
| 01 | 101 | 100 |
| 11 | 111 | 110 |

(e) Current State $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=100$
(f) Current State $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=101$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 010 |
| 10 | 010 | 000 |
| 01 | 100 | 011 |
| 11 | 110 | 001 |


| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State. <br> $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 001 | 110 |
| 10 | 011 | 100 |
| 01 | 101 | 111 |
| 11 | 111 | 101 |

(g) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1}=110$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 011 |
| 10 | 010 | 001 |
| 01 | 100 | 010 |
| 11 | 110 | 000 |

(h) Current State $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=111$

| Input | Output <br> $\mathrm{C}_{1} \mathrm{~K}_{2}$ | Next State <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ |
| :--- | :--- | :--- |
| 0 | 001 | $\mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| 00 | 001 | 111 |
| 10 | 011 | 101 |
| 01 | 101 | 110 |
| 11 | 111 | 100 |

Formatted: Justified, Line spacing: single, Position: Horizontal: Left, Relative to: Margin, Vertical: $0.1^{\prime \prime}$, Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Left, Relative to: Margin, Vertical: 0.1 ", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Left, Relative to: Margin, Vertical: 0.1", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Left, Relative to: Margin, Vertical: 0.1", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Left, Relative to: Margin, Vertical: 0.1 ", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: $-1.35 "$, Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: 0.13 ", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: 0.13", Wrap Around


Figure3.18Trellis Diagram of an8-State Transitions TCM/8-PSK
When the second heuristic rule is applied to these, the four outputs originating from same state are grouped intoa parent subset (quadruple) as shown in constellation diagram of figure 3.19 and listed at LHS from $t$ $=0$ of figure 3.18
To determine coding gain, the constellation diagram of figure 3.19 is used. The minimum square Euclidean distance in the quadruple subset is $\quad=2$. To determine the path with smallest total free Euclidean distance all the paths that started from 000 state and subsequently remerged into same 000 state were considered, the path that gives the smallest total Euclidean distance is calculated (referenced to $\mathrm{C}_{0}$ )as follows:


Figure 3.19 Mapping for an 8-State TCM/8PSK in Constellation
Transition from state 000 to 011 resulting to output $\mathrm{C}_{6}$ at squared distance of $=2$;transition from state 011 to 110 resulting to output $\mathrm{C}_{7}$ at squared distance of $=0.586$ and transition from state 110 to 000 resulting to output $\mathrm{C}_{6}$ at squared distance of $=2$. Thus,smallest total free Euclidean distance squaredd ${ }_{\text {free }}$ for this path is:

$$
=\quad+
$$

$$
=2+0.586+2=4.586
$$

Using equation 3.9

$$
\therefore \quad=10 \log \frac{4.586}{2}=3.6
$$

This is an improvement over the 3dB gain obtained from the 4 -State TCM/8-PSK, higher gain can be realized if more transitions are allowed.
(ii)A 16-state 8-PSK TCM

A 16 -State is formed by increasing the number of shift registers along the feedback path as shown in figure 3.20.


Figure 3.2016-StateSystematic Feedback for TCM/8-PSK

For each state of registers $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ there is an input- output table as shown in table 3.5.

Table 3.5TransitionState table for a 16-State Feedback TCM/8-PSK
a) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=000$
b) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0001$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0000 |
| 10 | 010 | 0001 |
| 01 | 100 | 0010 |
| 11 | 110 | 0111 |

c) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0010$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0001 |
| 10 | 010 | 0111 |
| 01 | 100 | 0000 |
| 11 | 110 | 0110 |

e) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0100$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0000 |
| 10 | 010 | 0100 |
| 01 | 100 | 0011 |
| 11 | 110 | 0101 |

g) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0110$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0011 |
| 10 | 010 | 0101 |
| 01 | 100 | 0010 |
| 11 | 110 | 0100 |


| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 001 | 1000 |
| 10 | 011 | 1010 |
| 01 | 101 | 1001 |
| 11 | 111 | 1011 |

d) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0011$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 001 | 1001 |
| 10 | 011 | 111 |
| 01 | 101 | 1000 |
| 11 | 111 | 1110 |

f) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0101$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 001 | 1010 |
| 10 | 011 | 1010 |
| 01 | 101 | 1101 |
| 11 | 111 | 1101 |$\quad . \quad+\quad . \quad$.

h) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0111$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | $\mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |  |
| :--- | :--- | :--- | :--- |
| 00 | 001 | 1011 |  |
| 10 | 010 | 1101 | - |
| 01 | 100 | 1010 | . |
| 11 | 110 | 1100 | . |

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.33", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.33", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.33", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.33", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.33", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.3", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.3", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.3", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.3", Relative to: Paragraph, Horizontal: 0.13 ", Wrap Around |
| :---: |
| Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.3", Relative to: Paragraph, Horizontal: 0.13", Wrap Around |
| Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.34", Relative to: Paragraph, Horizontal: 0.13", Wrap Around |
| Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.34", Relative to: Paragraph, Horizontal: 0.13 ", Wrap Around |
| Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.34", Relative to: Paragraph, Horizontal: 0.13 ", Wrap Around |
| Formatted ... [1] |
| Formatted $\ldots$...2] |
| Formatted ... [3] |
| Formatted ... [4] |
| Formatted $\ldots$... [5] |
| Formatted $\ldots$ [6] |
| Formatted $\ldots$ [7] |

i) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1000$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0100 |
| 10 | 010 | 0010 |
| 01 | 100 | 0101 |
| 11 | 110 | 0011 |

k) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1010$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0101 |
| 10 | 010 | 0011 |
| 01 | 100 | 0100 |
| 11 | 110 | 0010 |

m) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1100$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0110 |
| 10 | 010 | 0000 |
| 01 | 100 | 0111 |
| 11 | 110 | 0001 |

o) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1110$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 0111 |
| 10 | 010 | 0001 |
| 01 | 100 | 0110 |
| 11 | 110 | 0000 |


| Input <br> $k_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State- <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 1100 |
| 10 | 010 | 1010 |
| 01 | 100 | 1001 |
| 11 | 110 | 1011 |

I) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1011$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State- <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- |
| 00 | 000 | 1101 |
| 10 | 010 | 1011 |
| 01 | 100 | 1100 |
| 11 | 110 | 1010 |

n) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1101$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |  |
| :--- | :--- | :--- | :--- |
| 00 | 000 | 1110 |  |
| 10 | 010 | 1000 | - |
| 01 | 100 | 1111 | - |
| 11 | 110 | 1001 |  |

p) Current State $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1111$

| Input <br> $\mathrm{k}_{1} \mathrm{k}_{2}$ | Output $\mathrm{C}_{\mathrm{n}}$ <br> $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ | Next State <br> $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ |
| :--- | :--- | :--- | :--- |
| 00 | 000 | 1111 |
| 10 | 010 | 1001 |
| 01 | 100 | 1110 |
| 11 | 110 | 1000 |

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13 ", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph,
Horizontal: 0.13", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13 ", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -0.11", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -0.11", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -0.11 ", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: $0.13 "$, Wrap Around

Formatted: Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Formatted | $\ldots$ [8] |
| :--- | ---: |
| Formatted | $\ldots . .[9]$ |
| Formatted | $\ldots$ [10] |
| Formatted | $\ldots$ [11] |
| Formatted | $\ldots[12]$ |
| Formatted | $\ldots[13]$ |
| Formatted | $\ldots[14]$ |

Outputs: Current State $\left(\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}\right)$ :


Figure 3.21Trellis Diagram of a 16-State TCM/8-PSK [4]

Applying the second heuristic rule to the transitions, the four outputs originating from same state are grouped into a subset (quadruple) as $\mathrm{C}_{0} \mathrm{C}_{4} \mathrm{C}_{2} \mathrm{C}_{6}$ and $\mathrm{C}_{1} \mathrm{C}_{5} \mathrm{C}_{3} \mathrm{C}_{7}$ shown in constellation diagram of figure 3.22 and listed at LHS from $\mathrm{t}=0 \mathrm{in}$ trellis diagram of figure 3.21.
The output $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ are mapped into an 8-PSK constellation according to the second heuristic rule using the state table3.5


Figure 3.22Mapping for a16-State TCM/8-PSK in Constellation.
To determine coding gain, trellis diagram of figure 3.2 and the constellation diagram of figure 3.22 are used iteratively.
The quadruple subset output originating from same state in 8-PSK constellation have minimum Euclidean distance $\mathrm{d}_{1}{ }^{2}=2$ (as in signal set partition). While the smallest total squared distance (path that diverted from state 000 and then remerged into it) is determined as follows:

Transition paths are from state 0000 to 0001 resulting to output 100 or $\mathrm{C}_{4}$ on the constellation map, at distance of $\mathrm{C}_{0} \mathrm{C}_{4}\left(\mathrm{~d}_{1}{ }^{2}=2\right)$, then from state 0001 to 1001 resulting to output 011 or $\mathrm{C}_{3}$ at distance of $\mathrm{C}_{0} \mathrm{C}_{3}\left(\mathrm{~d}_{0}^{2}=0.586\right)$; then from state 1001 to 1100 resulting to output 001 or $\mathrm{C}_{1}$ at distance of $\mathrm{C}_{0} \mathrm{C}_{1}\left(\mathrm{~d}_{0}=0.586\right)$ and $\mathrm{C}_{4}$ at distance of $\mathrm{C}_{0} \mathrm{C}_{4}\left(\mathrm{~d}_{1}{ }^{2}=2\right)$, therefore

$$
\begin{array}{r}
=\quad+\quad+\quad \ldots \\
\\
=2+0.586+0.586+2=5.172 \\
\therefore \quad \\
=10 \log \frac{5.172}{2}=4.1
\end{array}
$$

This 16 -state TCM/8-PSK has yielded coding gain of 4.1 dB . It isestablished in Communication Theory that by increasing the number of transition states of TCM to 32, 64,128 and 256 more gains could be realized as shown in table 3.6.[4][10].
Table3.6Coding Gain Variation in Multiple TransitionState TCM

|  | Number of | Coding Gains for Trellis Coded Modulation (dB) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S/N | Transition <br> states | 8PSK <br> From <br> QPSK | 16-PSK <br> From <br> 8-PSK | 16-QAM <br> From <br> 8-QAM | 32-QAM <br> From <br> 16-QAM | 64-QAM <br> From <br> 32-QAM |
| 1 | 4 | 3.0 | 3.54 | 3.01 | 3.01 | 2.8 |
| 2 | 8 | 3.6 | 4.01 | 3.98 | 3.98 | 3.77 |
| 3 | 16 | 4.1 | 4.44 | 4.77 | 4.77 | 4.56 |
| 4 | 32 | 4 | 5.13 | 4.77 | 4.77 | 4.56 |
| 5 | 64 | 4.8 | 5.33 | 5.44 | 5.44 | 5.23 |
| 6 | 128 | 5 | 5.33 | 6.02 | 6.02 | 5.81 |
| 7 | 256 | 5.4 | 5.51 | 6.02 | 6.02 | 5.81 |

This Thesis work will simulate the higher coding gains of TCM/MSPK ( $\mathrm{M}=2,4,16$ and 32 ) using MATLAB in chapter 4 , then select from the results appropriate MPSKfor optimization of Data Throughput. A conceptual model that combined the multiple transition states in TCM/8PSK scheme is proposedin which the differentialcoding gain is appliedto counterthevariations in Free Space Loss of a downlink duringthe satellite passage.

### 3.5The Conceptual Model

## An Integrated Multiple State TCM/8-PSK Encoders

A proposalis made to counter the variation of Free Space Loss (FSL)in the downlink(mentioned in chapter 2), by using the differential gains that exist in a TCM as in table 3.6. A model is designed with multipleTCM/8PSKencoders as in figure 3.23 ,each has its number of state (4-,8-,16-,32-,64- and 128-state) transitions. The operation is to run in step, one encoder is to be selected at time to counter prevailing FSL with its codinggain.At low satellite elevation when maximum FSL is encountered, an encoder with maximum gain is selected to counter the loss. As the satellite elevation increases the loss reduces (equation 2.29) andthe model $\hat{\Phi}$ coding gain reduces too. The two input bits $k_{2} k_{1}$ of TCM/8-PSK are fed into all the multi- state (4, 8, 16, 64 and 128)
encodersas shown in the figure, a satellite range tracker or sensor that track motion of the satellite from horizon to horizon is to be connected to a selector-switch for theselection.


Figure3.23AnIntegrated Multi-State TCM/8-PSKModel
Due to large number of transition/output tables and complicated transition diagrams as seen in section 3.4.3, MATLAB software is used to design the multi-state encoders in section 3.5.1 for simplicity.

### 3.5.1Design of Multi-State TCM/8-PSK Encoders with MATLAB

The MATLAB software make use of a polynomial called poly2trellis to specify code rate, number of shift registers and code generators of a convolution or Trellis Coded Modulation (TCM). When polynomial is properly stated and the encoder is realistic the MATLAB generates the Transition and Output tables. While the designer must properly enter polynomial in terms of number of line input /output, the number of shift registers and connection of the code generators, it is the MATLAB that calculate and determine if the encoder is practically realistic. Although the MATLAB brings out the Transition and Output table in decimal (not in binary as in table 3.4 \&3.5) , but the polynomial must be stated in octaldecimal (base 8).

A $1 / 2$-rate encoder is specified using poly2trellis as follows:
Channel coding: Convolution; poly2trellis(5, [35 31])
Meaning one line input with constraint length $=5$ (i.e. 4 shift registers + input bit).
And there are twocode generators stated as 35 and 31 (each digit is specified in base 8)indicating how the registers contribute to two modulo- 2 adders that produces the two output bits.
Code Generators = [35 31]
Converting the octal numbers to binary
$=\left[\begin{array}{lll}011 & 101 & 011 \\ 001\end{array}\right]$ in binary-decimal
Thus, code generators are $g_{1}=11101$ and $g_{2}=11001$ The encoder is graphically represented as shown in figure 3.22


Figure 3.24A½-Rate Convolution Encoder from poly2trellis(5, [35 31])

## a) A 4-State Transition TCM/8-PSK

To design a 4- state transitionTCM/8-PSKencoder, an optimum code rate for TCM/8-PSK of $k / n=2 / 3$ is applied and since there are two input $k$ $=k_{1}+k_{2}$ (the input is split in two andeach line input hasits constraint length). Then, guided by MATLAB Software note, the encoder polynomial wasiteratively formed and entered into MATLAB command window as:

$$
=2 \quad 31,071 ; 100
$$

The MATLAB software checked the polynomial and returned the followings:

## trellis =

numInputSymbols: 4 (i.e. 4 binary combinations of $k_{1} k_{2}$ )
numOutputSymbols: 8 (i.e. 8 binary combinations $\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ )
numStates: $4 \quad$ (meaning 4 possible transition states)
nextStates: [ $4 \times 4$ double](i.e. 4 possible next state of registers
$S_{1} S_{0}$ for each current state in decimal)
outputs: [ $4 \times 4$ double] (i.e. 4 possible output of combination
$\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ for each of current statein decimal)
The implementation block diagram of the 4 -State TCM/8PSK encoder is shown in figure3.25. From two input lines its constraint length is $(1+3)=4$

These two commandstrellis.nextStates(1:4,:) and trellis.outputs(1:4,:) are entered into the MATLAB Windows to generate the next states [ $4 \times 4$ ] and outputs [4x4] tables respectively. The MATLAB returns the two tables separately, each with entries in decimal number. The two tables are combined and aligned in sequential order of shift registers $\mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}$ current transition stateas shown in table 3.7.


Figure 3.25A 4-State TCM/8-PSK Encoder Poly2trellis([3 1],[0 7 1;1 0 0])

Table 3.7Transition and Output Table for a 4-State TCM/8-PSK

## Current State Next States TCMOutput <br> $\mathbf{S}_{1} \mathbf{S}_{0} \mathbf{S}_{1} \mathbf{S}_{\mathbf{0}}\left(\mathbf{c}_{3} \mathbf{C}_{2} \mathbf{C}_{1}\right)$

| 00 | 0 | 0 | 2 | 2 | 0426 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 0 | 0 | 2 | 2 | 3 | 71 | 5 |
| 10 | 1 | 1 | 3 | 3 |  |  |  |
| 11 | 11 | 3 | 3 |  | 3 |  |  |

The first line of the table is interpreted as:At state $\mathrm{S}_{1} \mathrm{~S}_{0}=00$, the possible next states are $0,0,2$ and 2 or $00,00,10$ and 10 with corresponding MATLAB outputs $\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ as $0,4,2$ and 6 or 000, 100, 010 and 110. Although MATLAB does not produce a Trellis diagram but the parallel transition of a 4-state transition seen in figure 3.15 are obvious in the repetitive next state transitions in the table.Theoutputs are mapped into constellation points according to the rules of constellation mapping as shown in figure 3.26.
$\mathrm{C}_{2}(010)$


Figure 3.26Mapping for a 4-State TCM/8-PSKin Constellation
For Coding gain calculation table 3.7 and figure 3.26are used to select the minimum transition path $\mathrm{D}_{\text {free }}^{2}$ (transition that depart state 00 and return after two or more transitions to state 00 ). Since there is no trellis
diagram from the MATLAB, each transition path selected on the table is stated as: Current State(in binary) /Next State (in decimal)/TCM Output Symbol(in decimal) and an arrow to indicate a transition path. The following three candidate paths are considered:
a) Current State /Next State/TCM Output Symbol:

00/0/4 (parallel with 00/0/0)
Output symbols on this parallel path is $\mathrm{C}_{4}$ only
Using figure 3.26, the total path distance $D_{\text {free }}^{2}=C_{4}$
$D_{\text {free }}^{2}=4$
b) Current State/ Next State/Output:

00/2/2 10/1/2 001/0/3
Thus $D_{\text {free }}^{2}=\left(C_{2}+C_{2}+C_{3}\right)$

$$
=2+2+\sqrt{2} 4.586
$$

c) Current State/ Next State/ Output:
$00 / 2 / 6 \longrightarrow 10 / 1 / 601 / 0 / 7$
thus using constellation map of figure 3.26
$D_{\text {free }}^{2}=C_{6}+C_{6}+C_{1}$
$2+2+2-\sqrt{2}=4.586$
Option (a) is the path with minimum $D_{\text {free }}^{2}=4.0$

$$
\begin{aligned}
\therefore \quad & =10 \log = \\
= & 10 \log \frac{4.0}{2}=3.0
\end{aligned}
$$

## ii) 8-State Transition TCM /8-PSK Encoder

The polynomial code to generate 8 transition states TCM on 8-PSK is iteratively formed by increasing constraint length by one (adding one shift register) to the 4 -state TCM/8-PSK and entered in the MATLAB command window as:

$$
=223,031 ; 403
$$

The MATLAB returns
trellis =
numlnputSymbols: 4 (4 logical combinations of $k_{1} k_{2}$ ) numOutputSymbols: 8 (8 logical combinations $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ ) numStates: 8 (8 logical transition states $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ )

```
        nextStates: [8x4 double] ( 4 possible next state of S S S S So
    from each of the 8 transitions)
    outputs: [8x4 double]
    (4 possible output of }\mp@subsup{\textrm{C}}{1}{}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{C}}{3}{}\mathrm{ from
each of the 8 transitions)
```

The implementation block diagram of the 8-StateTCM/8PSK encoder is shown in figure 3.27. From two input linesit constraints length is $(2+3)=5$

The two commandstrellis.nextStates(1:8,:) and trellis.outputs(1:8,:) are entered into the MATLAB Windowsto generate the next states [ $8 \times 4$ ] and outputs [8x4] tables respectively. The MATLAB returns the two tables separately, the next state and output symbols are presented in decimal number. The two tables are combined and aligned in sequential order of current state of the Shift registers $\mathbf{S}_{\mathbf{2}} \mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}$ as shown in table 3.8


Figure 3.27An 8-State TCM/8-PSK Encoder:poly2trellis([2 3],[0 3 1; 40 3])
Table 3.88-State TCM/8-PSK Transition and Output table
Current State Next States TCM Outputs SymbolsMapping $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0} \quad\left(\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}\right)$


For instance at state $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=100$, the possible next states are 2, 6, 3 and 7 or $010,110,011$ and 111 with corresponding outputs $\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ as 1 , 5,3 and 7 or 001, 101,011 and 111. Thus applying the mapping rules to this set of outputs to obtain the constellation diagram of figure 3.28.
$\mathrm{C}_{2}(010)$
$\mathrm{C}_{3}(011)$
$\mathrm{C}_{4}(100)$
$\mathrm{C}_{5}$ (101)

$\mathrm{C}_{6}$ (110)
Figure 3.28 Mapping for an8-State TCM/8-PSK in Constellation
To calculate the expected Coding Gain against uncoded QPSKusing table 3.8 to determine the minimum $\mathrm{D}_{\text {free }}^{2}$ transition path, the following paths that depart State 000 and return to it with minimum length are considered:
a) Current State /Next State/Output Symbol $\left(\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}\right)$ :

$$
000 / 4 / 4 \longrightarrow 100 / 2 / 2 \longrightarrow 010 / 0 / 1
$$

Thus, transition path length $=\left(\mathrm{C}_{4}+\mathrm{C}_{2}+\mathrm{C}_{1}\right)$

$$
D_{\text {free }}^{2}=4+2+2-\sqrt{2}=6.586
$$

b) Current State/ Next State/Output:

000/1/2 $\longrightarrow 001 / 0 / 3 \longrightarrow 001 / 0 / 4$
Thus, transition path length $D_{\text {free }}^{2}=\left(C_{2}+C_{3}\right)$

$$
=2+2+\sqrt{2} 5.414
$$

c) Current State/ Next State/ Output:

000/5/6101/な/2 010/0/1
Thus, transition path length $D_{\text {free }}^{2}=C_{6}+C_{2}+C_{1}$

$$
2+2+2-\sqrt{2}=4.586
$$

Option (c) is the path with $D_{\text {free }}^{2}=4.586$

$$
\begin{aligned}
\therefore & =10 \log - \\
= & 10 \log \frac{4.586}{2}=3.6
\end{aligned}
$$

## iii) 16-State Transition TCM/ 8-PSK

The polynomial code to generate 16 transition states TCM on 8-PSK is iteratively formed by increasing constraint length by one (adding one shift register) to the 8 -state TCM/8-PSK and entered in the MATLAB command window as:

$$
=\quad 2 \quad 24,031 ; 1015
$$

The MATLAB checked the polynomial and returned the followings:
trellis =
numlnputSymbols: $4 \quad\left(k_{1} k_{2}\right)$
numOutputSymbols: $8 \quad\left(\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}\right)$
numStates: 16 (meaning 16 possible transition state)
nextStates: [16x4 double]
outputs: [16x4 double]
The implementation block diagram of the 16-StateTCM/8PSK encoder is shown in figure 3.29.From the two input lines its constraint length is $(2+4)=6$.

These commandstrellis.nextStates(1:16,:) and trellis.outputs(1:16,:) are entered into the MATLAB Windows to generate the next states [16x4] and outputs [16×4] tables respectively. The MATLAB returns the two tables separately, with entries in decimal number representing a possible next states and corresponding outputs. The two tables are combined and aligned in sequential order of shift registers $\mathbf{S}_{3} \mathbf{S}_{\mathbf{2}} \mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}$ transition state as shown in table 3.9.


Figure 3.29A 16-State TCM/8-PSK Encoder: poly2trellis([2 4],[0 3 1;10 1 5])
Table 3.916-State TCM/8-PSK Transition and Output table
Current State Next StatesTCMOutputs
$\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}\left(\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}\right)$



Figure 3.30Mapping for a16-State TCM/8-PSK in Constellation

For instance at state $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0000$, the possible next states are 0,8 , 1 and 9 or $0000,1000,0001$ and 1001 with corresponding outputs $\mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1}$ as $0,4,2$ and 6 or 000, 100, 010 and 110. Thus applying the mapping rules to this set of outputs using constellation figure 3.30
From the table 3.09 and figure 3.30 paths that depart State 0000 available and return to it are as follows
a) Current State/ Next State/Output:

$$
0000 / 8 / 41000 \not 4 / 1 \quad 0100 \not 0 / 2
$$

Thus, transition path lengthD ${ }^{2}$ free $=C_{4}+C_{1}+C_{3}$

$$
=4+2-\sqrt{2}+2+\sqrt{2}=8
$$

b) Current State/Next State/Output:

0000/1/20001/0/30000 $\longrightarrow$
Thus, transition path length $D_{\text {free }}^{2}=C_{2}+C_{3}$

$$
\therefore \quad=2+2+\sqrt{2}=5.414
$$

c) Current State/ Next State/Output:

$$
0000 / 9 / 6 \longrightarrow 001 / 4 / 2 \longrightarrow 0100 / 1 / 2-0001 / 0 / 4
$$

Thus $\mathrm{D}_{\text {free }}^{2}$ corresponding to the three outputs:
$D_{\text {free }}^{2}=C_{6}+C_{2}+C_{2}+C_{3}$

$$
\therefore=2+2+2+2+\sqrt{2}=9.414
$$

Option (b) has path with least $D_{\text {free }}^{2}=5.414$

$$
\begin{array}{ll}
\therefore & =10 \log - \\
\therefore & =10 \log \frac{5.414}{2} \\
& =4.325
\end{array}
$$

## iv) A 32- State Transition TCM/8PSK

The polynomial code to generate 32 transition states TCM on $8-\mathrm{PSK}$ is iteratively formed by increasing constraint length by one (adding one shift register) to the 16 -state TCM/8-PSK and entered on the MATLAB command window as:

$$
=234,053 ; 10113
$$

MATLAB checked the poloynomial and returned the followings: trellis =
numInputSymbols: 4
numOutputSymbols: 8
numStates: 32 (meaning 32 possible transition states)
nextStates: [32x4 double]
outputs: [32x4 double]
The implementation block diagram of 32 -State TCM/8PSK encoder is shown in figure 3.3. From two input lines its constraints length is $(3+4)=7$ The two commandstrellis.nextStates(1:32,:) and trellis.outputs(1:32,:)


Figure 3.31A 32-StateTCM/8-PSK Encoder: poly2trellis([3 4],[0 5 3;10 113])
are entered into the MATLAB Windowsto generate the next states [32x4] and outputs $[32 \times 4]$ tables respectively. The MATLAB returns the two tables separately, with entries in decimal number representing a possible next states and corresponding outputs. The two tables are combined and aligned in sequential order of shift registers $\mathbf{S}_{4} \mathbf{S}_{3} \mathbf{S}_{\mathbf{2}} \mathbf{S}_{1} \mathbf{S}_{0}$ current transition state as shown in table 3.10.

| Current State Next States T |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0} \mathrm{~S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0} \quad\left(\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}\right)$ |  |  |  |  |
| 00000. | $\begin{array}{llll}0 & 16 & 2 & 18\end{array}$ |  |  | 4 |
| 00001. | $\begin{array}{llll}0 & 16 & 2 & 18\end{array}$ | 3 | 51 |  |
| 00010. | $\begin{array}{llll}1 & 17 & 3 & 19\end{array}$ | 1 | 7 |  |
| 00011 | $\begin{array}{llll}1 & 17 & 3 & 19\end{array}$ | 2 | 4 |  |
| 00100 | $\begin{array}{llll}0 & 16 & 2 & 18\end{array}$ | 3 | 51 |  |
| 00101 | $\begin{array}{llll}0 & 16 & 2 & 18\end{array}$ | 0 | 6 |  |
| 00110 | $\begin{array}{llll}1 & 17 & 3 & 19\end{array}$ | 2 | 4 |  |
| 00111. | $\begin{array}{llll}1 & 17 & 3 & 19\end{array}$ | 1 | 7 |  |
| 01000. | $4 \quad 20 \quad 6 \quad 22$ | 1 | 7 |  |
| 01001. | 420622 | 2 | 4 |  |
| 01010 | $\begin{array}{llll}5 & 21 & 7\end{array}$ | 0 | 6 |  |
| 01011 | $\begin{array}{llll}5 & 21 & 7 & 23\end{array}$ | 3 | 5 |  |
| 01100. | $4 \quad 20622$ | 2 | 4 |  |
| 01101. | 420622 | 1 | 73 |  |
| 01110 | $\begin{array}{llll}5 & 21 & 7\end{array}$ | 3 | 5 |  |
| $\begin{array}{llll}0 & 1 & 1\end{array}$ | $\begin{array}{llll}5 & 21 & 7 & 23\end{array}$ | 0 | 6 |  |
| 10000. | 8241026 |  | 6 |  |
| 10001. | 8241026 | 3 | 5 |  |
| 10010. | 9251127 | 1 | 7 |  |
| 10011. | 9251127 |  | 40 |  |
| 10100. | 8241026 | 3 | 51 |  |
| 10101. | 8241026 |  | 62 |  |
| 10110. | 9251127 | 2 | 40 |  |
| 10111. | 9251127 | 1 | 73 |  |
| 11000. | 12281430 | 1 | 73 | 5 |
| 11001. | 12281430 |  | 40 | 6 |
| 11010. | 13291531 | 0 | 62 | 4 |
| 11011. | 13291531 | 3 | 51 |  |
| 11100. | 12281430 |  | 40 | 6 |
| 11101. | 122814301 | 3 | 35 |  |
| 11110. | 13291531351 | 7 |  |  |
| 1111. | 132915310 |  |  |  |

For instance at state $\mathrm{S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=00111$, the possible next states are 1 , 17,3 and 19 or 00001, 10001, 00110 and 10011 with corresponding outputs $\mathrm{c}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ as $1,7,3$ and 5 or 001, 111, 011 and 101. Thus applying the mapping rules to this set of outputs


Figure 3.32Mapping for a 32-State TCM/8-PSKin Constellation
From the tables 3.10 and figure 3.32 Transitions paths that depart State 0000 and return to it are as follows
a) Current State/Next State/Output:

00000/16/610000/10/201010/7/200111/1/1 $\longrightarrow$
00001/0/3
Thus $\mathrm{D}^{2}$ free corresponding to the five transition:
$\mathrm{D}_{\text {free }}^{2}=\mathrm{C}_{6}+\mathrm{C}_{2}+\mathrm{C}_{2}+\mathrm{C}_{1}+\mathrm{C}_{3}$

$$
=2+2+2+2-\sqrt{2}+2+\sqrt{2}=10
$$

b) Current States/Next State/ Output 0000/2/20001*0/1/ 000001/0/3

Thus $\mathrm{D}_{\text {free }}^{2}$ corresponding to the three outputs:
$D_{\text {free }}^{2}=C_{2}+C_{3}+C_{1}$

$$
\therefore=2+2+\sqrt{2}+2-\sqrt{2}=6
$$

c) Current State/ Next State/Output:

00000/18/4 10010/9/1 1001/4/2 00100/0/3

Thus $\mathrm{D}_{\text {free }}^{2}$ corresponding to the four transitions:
$D_{\text {free }}^{2}=C_{4}+C_{1}+C_{2}+C_{3}$
$\therefore \quad=4+2-\sqrt{2}+2+2+\sqrt{2}=10$
Option (b) has path with least $D_{\text {free }}^{2}=6.0$

$$
\begin{array}{ll}
\therefore & =10 \log - \\
\therefore & \\
& =10 \log \frac{6.0}{2} \\
& =4.771
\end{array}
$$

## v) A 64-State Transition TCM/8PSK

The polynomial code to generate 64 transition states TCM on 8-PSK is iteratively formed by increasing constraint length by one (adding one shift register) to the 32-state TCM/8-PSK and entered on the MATLAB command window as:
trellis = poly2trellis([4 4],[0 11 7; 104 3])
MATLAB checked the polynomial and returned the followings:
trellis $=$
numlnputSymbols: 4
numOutputSymbols: 8
numStates: 64 (meaning 64 possible transition states)
nextStates: [ $64 \times 4$ double]
outputs: [64×4 double]
The block diagram of the 64-State Transition TCM/8PSK encoder is shown in figure 3.33. From two input lines its constraint length is $(4+4)=8$


Figure 3.33A 64-StateTCM/8-PSK Encoder:poly2trellis([4 4],[0 11 7; 104 3])
The two commands trellis.nextStates(1:64,:) and trellis.outputs(1:64,:) are entered into the MATLAB Windowsto generate the tables next states $[64 \times 4]$ and outputs $[64 \times 4]$ respectively. The MATLAB returns the two tables separately, with entries in decimal number representing a possible next states and corresponding outputs. The two tables are combined and aligned in sequential order of shift registers $\mathbf{S}_{5} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{3} \mathbf{S}_{\mathbf{2}} \mathbf{S}_{1} \mathbf{S}_{0}$ current transition state as shown in table 3.11.
For instance at state $\mathrm{S}_{5} \mathrm{~S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=010000$, the possible next states are 8, 40, 12 and 44 or 001000, 101000, 001010 and 101100 with corresponding outputs $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ as $1,5,3$ and 7 or $001,101,011$ and 111. Thus applying the mapping rules to this set of outputs

Table 3.1164-State TCM/8-PSK Transition and Output table

## Current State Next StatesTCMOutputs

## 

| 000000 . | 0 | 32 |  | 36 | 0426 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000001. | 0 | 32 | 4 | 36 | 3 | 7 | 1 | 5 |
| 000010. | 1 | 33 | 5 | 37 | 1 | 5 | 3 | 7 |
| 000011. | 1 | 33 | 5 | 37 | 2 | 6 | 0 | 4 |
| 000100. | 2 | 34 | 6 | 38 | 1 | 5 | 3 | 7 |
| 000101. | 2 | 34 | 6 | 38 | 2 | 6 | 0 | 4 |
| 000110. | 3 | 35 | 7 | 39 | 0 | 4 | 2 | 6 |
| 000111. | 3 | 35 | 7 | 39 | 3 | 7 | 1 | 5 |
| 001000. | 0 | 32 | 4 | 36 | 1 | 5 | 3 | 7 |
| 001001. | 0 | 32 | 4 | 36 | 2 | 6 | 0 | 4 |
| 001010. | 1 | 33 | 5 | 37 | 0 | 4 | 2 | 6 |
| 001011. | 1 | 33 | 5 | 37 | 3 | 7 | 1 | 5 |
| 001100. | 2 | 34 | 6 | 38 | 0 | 4 | 2 | 6 |
| 001101. | 2 | 34 | 6 | 38 | 3 | 7 | 1 | 5 |
| 001110. | 3 | 35 | 7 | 39 | 1 | 5 | 3 | 7 |
| 001111. | 3 | 35 | 7 | 39 | 2 | 6 | 0 | 4 |
| 010000. | 8 | 40 | 12 | 44 | 1 | 5 | 3 | 7 |
| 010001. | 8 | 40 | 12 | 44 | 2 | 6 | 0 | 4 |
| 010010. | 9 | 41 | 13 | 45 | 0 | 4 | 2 | 6 |
| 010011. | 9 | 41 | 13 | 45 | 3 | 7 | 1 |  |


| 010100. |  |  | 14 | 46 | 0426 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 010101. |  | 42 | 14 | 46 | 3 | 71 | 1 |  |
| 010110. | 1143 | 15 |  | 1 | 53 | 7 |  |  |
| 010111. | 11 |  | 15 | 47 | 26 | 0 |  |  |
| 011000. | 8 | 40 | 12 | 44 | 0 | 4 | 2 | 6 |
| 011001. | 8 | 40 | 12 | 44 | 3 | 7 | 1 | 5 |
| 011010. | 9 | 41 | 13 | 45 | 1 | 5 | 3 | 7 |
| 011011. | 9 | 41 | 13 | 45 | 2 | 6 | 0 | 4 |
| 011100. | 10 | 42 | 14 | 46 |  | 5 | 3 | 7 |
| 011101. | 10 | 42 | 14 | 46 |  | 60 | 04 |  |
| 011110.11 | 4315 | 47 |  | 0 | 426 |  |  |  |
| 011111. | 11 | 43 |  | 47 |  | 71 | 5 |  |
| 100000. | 16 |  | 20 | 52 | 2 | 60 | 0 |  |
| 100001. | 16 | 48 | 20 | 52 | 1 | 5 | 3 |  |
| 100010. | 17 | 49 |  | 53 | 3 | 7 | 1 | 5 |
| 100011. | 17 | 49 | 21 | 53 | 0 | 4 |  | 6 |
| 100100. | 18 | 50 | 22 | 54 | 3 | 7 |  | 5 |
| 100101. | 18 | 50 | 22 | 54 | 0 | 4 |  | 6 |
| 100110. | 19 | 51 | 23 | 55 | 2 | 6 |  | 4 |
| 100111. | 19 | 51 | 23 | 55 | 1 | 5 |  | 7 |
| 101000. | 16 | 48 | 20 | 52 | 3 | 7 |  | 5 |
| 101001. | 16 | 48 | 20 | 52 | 0 | 4 |  | 6 |
| 101010. | 17 | 49 | 21 | 53 | 2 | 6 |  | 4 |
| 101011. | 17 | 49 | 21 | 53 | 1 | 5 |  | 7 |
| 101100. | 18 | 50 | 22 | 54 | 2 | 6 |  | 4 |
| 101101 | 18 | 50 | 22 | 54 | 1 | 5 |  | 7 |
| 101110 | 19 | 51 | 23 | 55 | 3 | 7 | 1 | 5 |
| 101111. | 19 | 51 | 23 | 55 | 0 | 4 | 2 | 6 |
| 110000. | 24 | 56 | 28 | 60 | 3 | 7 | 1 | 5 |
| 110001. | 24 | 56 | 28 | 60 | 0 | 4 |  | 6 |
| 110010. | 25 | 57 | 29 | 61 | 2 | 6 | 0 | 4 |
| 110011. | 25 | 57 | 29 | 61 | 1 | 5 | 3 | 7 |
| 110100. | 26 | 58 | 30 | 62 | 2 | 6 |  | 4 |
| 110101 | 26 | 58 | 30 | 62 | 1 | 5 |  | 7 |
| 110110. | 27 | 59 | 31 | 63 | 3 | 7 |  | 5 |
| 110111. | 27 | 59 | 31 | 63 | 0 | 4 | 2 | 6 |
| 111000. | 24 | 56 | 28 | 60 | 2 | 6 | 0 |  |

| 111001. | 24 | 5628 | 60 | 1 | 5 | 3 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111010. | 25 | 5729 | 61 | 3 | 7 | 1 | 5 |
| 111011 | 25 | 5729 | 61 | 0 | 4 | 2 | 6 |
| 111100. | 26 | 5830 | 62 | 3 | 7 | 1 | 5 |
| 111101. | `26 | 5830 | 62 | 04 | 2 |  | 6 |
| 111110.27 | 593 | 63 | 26 |  |  |  |  |
| 111111. | 27 | 5931 | 63 | 15 | 3 |  |  |



Figure 3.34Mapping for64-State TCM/8-PSK in Constellation
Using Mapping table 3.11 and figure 3.34 the paths with smaller $D_{\text {free }}^{2}$ that depart State 000000 and return to it are as follows
a) Current State/Next State/Output: 000000/32/400000/16/2010000/8/1 001000/0/1
Thus $D_{\text {free }}^{2}$ corresponding to the five outputs:
$\mathrm{D}_{\text {free }}^{2}=\mathrm{C}_{4}+\mathrm{C}_{2}+\mathrm{C}_{1}+\mathrm{C}_{1}$

$$
=4+2+22-\sqrt{2}=7.17157
$$

b) Current States/ Next State /Output:

000000/4/2 $\longrightarrow 000100 / 2 / 1000010 / 1 / 1000001 / 1 / 3$
Thus $\mathrm{D}_{\text {free }}^{2}$ corresponding to the three outputs:
$\mathrm{D}_{\text {free }}^{2}=\mathrm{C}_{2}+\mathrm{C}_{1}+\mathrm{C}_{1}+\mathrm{C}_{3}$

$$
\therefore=2+22-\sqrt{2}+2+\sqrt{2}=6.5858
$$

c) Current State/Next State/ Output:

000000/36/6 $\longrightarrow$ 100110/18/3 010010/13/2 $\longrightarrow$
$01101 / 2 / 30000 * 0 / 1 / 1000001 / 0 / 3 \rightarrow$
Thus $D_{\text {free }}^{2}$ corresponding to the four transitions:
$\mathrm{D}_{\text {free }}^{2}=\mathrm{C}_{6}+\mathrm{C}_{3}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{1}+\mathrm{C}_{3}$

$$
\therefore \quad=2+42+\sqrt{2}+2-\sqrt{2}=6.5858
$$

Option (b) has the least $D_{\text {free }}^{2}=6.5858$

$$
\begin{array}{lll}
\therefore & & =10 \log \frac{6.5858}{2} \\
= & 5.1759
\end{array}
$$

## vi) A 128-State Transition TCM/8PSK

The polynomial code to generate 128 transition states TCM on 8-PSK is iteratively formed by increasing the constraint length by one (adding one shift register) to the 64-state TCM/8-PSK and entered on the MATLAB command window as:

$$
=254,02314 ; 10153
$$

MATLAB checked the polynomial and returned the followings:
trellis =
numInputSymbols: 4
numOutputSymbols: 8
numStates: 128 (meaning 128 possible transition states)
nextStates: [128x4 double]
outputs: [128 x4 double]

The block diagram of the 128 -State Transition TCM/8PSK encoder is shown in figure 3.34. From two input lines its constraint length is $(5+4)=9$.


Figure3.34128-StateTCM/8PSK Encoder:poly2trellis([5 4],[0 23 14; 1015 3])
The two commandstrellis.nextStates(1:128,:) and trellis.outputs(1:128,:) are entered into the MATLAB Windowsto generate the tables next states [128×4] and outputs [128×4] respectively. The MATLAB returns the two tables separately, with entries in decimal number representing a possible next states and corresponding outputs. The two tables are combined and aligned in sequential order of shift registers $\mathbf{S}_{6} \mathbf{S}_{\mathbf{5}} \mathbf{S}_{\mathbf{4}} \mathbf{S}_{3} \mathbf{S}_{\mathbf{2}} \mathbf{S}_{1} \mathbf{S}_{0}$ current transition state as shown in table For instance at state $\mathrm{S}_{6} \mathrm{~S}_{5} \mathrm{~S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=1110000$, the possible next states are $48,112,56$ and 120 or 0110000, 1110000, 0111000and 1111000 with corresponding outputs $\mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1}$ as $0,6,2$ and 4 or 000,110 , 010 and 100. Thus applying the mapping rules to this set of outputs on each raw as shown in table 3.12.

Table 3.12128-State TCM/8-PSK Transition and Output table


| 0100010. | 17 | 81 | 25 | 89 | 3 | 5 | 1 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0100011. | 17 | 81 | 25 | 89 | 1 | 7 | 3 | 5 |
| 0100100. | 18 | 82 | 26 | 90 | 0 | 6 | 2 | 4 |
| 0100101. | 18 | 82 | 26 | 90 | 2 | 4 | 0 | 6 |
| 0100110. | 19 | 83 | 27 | 91 | 2 | 4 | 0 | 6 |
| 0100111. | 19 | 83 | 27 | 91 | 0 | 6 | 2 | 4 |
| 0101000. | 20 | 84 | 28 | 92 | 0 | 6 | 2 | 4 |
| 0101001. | 20 | 84 | 28 | 92 | 2 | 4 | 0 | 6 |
| 0101010. | 21 | 85 | 29 | 93 | 2 | 4 | 0 | 6 |
| 0101011. | 21 | 85 | 29 | 93 | 0 | 6 | 2 | 4 |
| 0101100. | 22 | 86 | 30 | 94 | 1 | 7 | 3 | 5 |
| 0101101 | 22 | 86 | 30 | 94 | 3 | 5 | 1 | 7 |
| 0101110 | 23 | 87 | 31 | 95 | 3 | 5 | 1 | 7 |
| 0101111. | 23 | 87 | 31 | 95 | 1 | 7 | 3 | 5 |
| 0110000. | 16 | 80 | 24 | 88 | 2 | 4 | 0 | 6 |
| 0110001. | 16 | 80 | 24 | 88 | 0 | 6 | 2 | 4 |
| 0110010. | 17 | 81 | 25 | 89 | 0 | 6 | 2 | 4 |
| 0110011. | 17 | 81 | 25 | 89 | 2 | 4 | 0 | 6 |
| 0110100. | 18 | 82 | 26 | 90 | 3 | 5 | 1 | 7 |
| 0110101 | 18 | 82 | 26 | 90 | 1 | 7 | 3 | 5 |
| 0110110. | 19 | 83 | 27 | 91 | 1 | 7 | 3 | 5 |
| 0110111. | 19 | 83 | 27 | 91 | 3 | 5 | 1 | 7 |
| 0111000. | 20 | 84 | 28 | 92 | 3 | 5 | 1 | 7 |
| 0111001. | 20 | 84 | 28 | 92 | 1 | 7 | 3 | 5 |
| 0111010. | 21 | 85 | 29 | 93 | 1 | 7 | 3 | 5 |
| 0111011. | 21 | 85 | 29 | 93 | 3 | 5 | 1 | 7 |
| 0111100. | 22 | 86 | 30 | 94 | 2 | 4 | 0 | 6 |
| 0111101. | 22 | 86 | 30 | 94 | 0 | 6 | 2 | 4 |
| 0111110. | 23 | 87 | 31 | 95 | 0 | 62 | 24 |  |
| 0111111. | 23 | 87 | 31 | 95 | 2 | 4 | 0 | 6 |
| 1000000 | 32 | 96 | 40 | 104 | 2 | 4 | 0 | 6 |
| 1000001 | 32 | 96 | 40 | 104 | 0 | 6 | 2 |  |
| 1000010 | 33 | 97 | 41 | 105 | 0 | 6 | 2 | 4 |
| 1000011 | 33 | 97 | 41 | 105 | 2 | 4 | 0 | 6 |
| 1000100 | 34 | 98 | 42 | 106 | 3 | 5 | 1 | 7 |
| 1000101 | 34 | 98 | 42 | 106 | 1 | 7 | 3 | 5 |
| 1000110 | 35 | 99 | 43 | 107 | 1 | 7 | 3 | 5 |


| 1000111 | 35 | 99 | 43 | 107 |  |  | 5 | 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1001000 | 36 | 100 | 44 | 108 |  |  | 5 | 1 | 7 |
| 1001001 | 36 | 100 | 44 | 108 |  |  | 7 | 3 | 5 |
| 1001010 | 37 | 101 | 45 | 109 |  |  | 7 | 3 | 5 |
| 1001011 | 37 | 101 | 45 | 109 |  | 3 | 5 | 1 |  |
| 1001100 | 38 | 102 | 46 | 110 |  | 2 | 4 | 0 | 6 |
| 1001101 | 38 | 102 | 46 | 110 |  | 0 | 6 | 2 | 4 |
| 1001110 | 39 | 103 | 47 | 111 |  | 0 | 6 | 2 |  |
| 1001111 | 39 | 103 | 47 | 111 |  | 2 | 4 | 4 |  |
| 1010000 | 32 | 96 | 40 | 104 |  | 1 | 7 | 3 |  |
| 1010001 | 32 | 96 | 40 | 104 |  |  | 5 | 1 | 7 |
| 1010010 | 33 | 97 | 41 | 105 |  |  | 5 | 1 | 7 |
| 1010011 | 33 | 97 | 41 | 105 |  | 1 | 7 | 3 | 5 |
| 1010100 | 34 | 98 | 42 | 106 |  | 0 | 6 | 2 | 4 |
| 1010101 | 34 | 98 | 42 | 106 |  | 2 | 4 | 0 | 6 |
| 1010110 | 35 | 99 | 43 | 107 |  |  | 4 | 0 | 6 |
| 1010111 | 35 | 99 | 43 | 107 |  | 0 | 6 | 2 |  |
| 1011000 | 36 | 100 | 44 | 108 |  | 0 | 6 | 2 |  |
| 1011001 | 36 | 100 | 44 | 108 |  |  | 4 | 0 |  |
| 1011010 | 37 | 101 | 45 | 109 |  |  | 4 | 0 |  |
| 1011011 | 37 | 101 | 45 | 109 |  | 0 | 6 | 2 |  |
| 1011100 | 38 | 102 | 46 | 110 | 1 | 7 | 3 | 5 |  |
| 1011101 | 38 | 102 | 46 | 110 | 3 | 5 | 7 | 7 |  |
| 1011110 | 39 | 103 | 47 | 111 |  | 3 | 5 | 1 | 7 |
| 1011111 | 39 | 103 | 47 | 111 |  | 1 | 7 | 3 | 5 |
| 1100000 | 48 | 112 | 56 | 120 |  | 3 | 5 | 1 | 7 |
| 1100001 | 48 | 112 | 56 | 120 |  | 1 | 7 | 3 | 5 |
| 1100010 | 49 | 113 | 57 | 121 | 1 | 7 | 3 | 5 |  |
| 1100011 | 49 | 113 | 57 | 121 | 3 | 5 | 1 | 7 |  |
| 1100100 | 50 | 114 | 58 | 122 | 2 | 4 | 0 | 6 |  |
| 1100101 | 50 | 114 | 58 | 122 | 0 | 6 | 2 | 4 |  |
| 1100110 | 51 | 115 | 59 | 123 |  | 0 | 6 | 2 | 4 |
| 1100111 | 51 | 115 | 59 | 123 |  | 2 | 4 | 0 | 6 |
| 1101000 | 52 | 116 | 60 | 124 |  | 2 | 4 | 0 | 6 |
| 1101001 | 52 | 116 | 60 | 124 |  | 0 | 6 | 2 | 4 |
| 1101010 | 53 | 117 | 61 | 125 |  | 0 | 6 | 2 | 4 |
| 1101011 | 53 | 117 | 61 | 125 |  | 2 | 4 | 0 | 6 |


| 1101100 | 54 | 118 | 62 | 126 |  | 3 | 5 | 1 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1101101 | 54 | 118 | 62 | 126 |  | 1 | 7 | 3 | 5 |
| 1101110 | 55 | 119 | 63 | 127 |  | 1 | 7 | 3 | 5 |
| 1101111 | 55 | 119 | 63 | 127 | 3 | 5 | 1 | 7 |  |
| 1110000 | 48 | 112 | 56 | 120 |  | 0 | 6 | 2 | 4 |
| 1110001 | 48 | 112 | 56 | 120 |  | 2 | 4 | 0 | 6 |
| 1110010 | 49 | 113 | 57 | 121 |  | 2 | 4 | 0 | 6 |
| 1110011 | 49 | 113 | 57 | 121 |  | 0 | 6 | 2 | 4 |
| 1111000 | 50 | 114 | 58 | 122 |  | 1 | 7 | 3 | 5 |
| 1110101 | 50 | 114 | 58 | 122 |  | 3 | 5 | 1 | 7 |
| 1110110 | 51 | 115 | 59 | 123 |  | 3 | 5 | 1 | 7 |
| 1110111 | 51 | 115 | 59 | 123 |  | 1 | 7 | 3 | 5 |
| 1111000 | 52 | 116 | 60 | 124 |  | 1 | 7 | 3 | 5 |
| 1111001 | 52 | 116 | 60 | 124 |  | 3 | 5 | 1 | 7 |
| 1111010 | 53 | 117 | 61 | 125 |  | 3 | 5 | 1 | 7 |
| 1111011 | 53 | 117 | 61 | 125 |  | 1 | 7 | 3 | 5 |
| 1111100 | 54 | 118 | 62 | 126 |  | 0 | 6 | 2 | 4 |
| 1111101 | 54 | 118 | 62 | 126 |  | 2 | 4 | 0 | 6 |
| 1111110 | 55 | 119 | 63 | 127 |  | 2 | 4 | 0 | 6 |
| 1111111 | 55 | 119 | 63 | 127 |  |  | 62 | 2 |  |



Figure 3.36Mapping for 128-StateTCM/8-PSK in Constellation

From the table 3.12 and figure 3.36 paths that depart State 0000 available and return to it are as follows:
a|) Current State/Next State/Output:
$0000000 / 64 / 6 \longrightarrow 1000000 / 32 / 2 \longrightarrow 0100000 / 16 / 1 \longrightarrow$ 0010000/0/3
Thus $\mathrm{D}_{\text {free }}^{2}$ corresponding to the five outputs:
$\mathrm{D}_{\text {free }}^{2}=\mathrm{C}_{6}+\mathrm{C}_{2}+\mathrm{C}_{1}+\mathrm{C}_{3}$

$$
=2+2+2-\sqrt{2}+2+\sqrt{2}=8
$$

b) Current State/ Next State/Output:
$0000000 / 8 / 2 \longrightarrow 0001000 / 4 / 1 \longrightarrow 0000100 / 2 / 1 \longrightarrow 0000010 / 1 / 2$
000000 $/ 0 / 2$
Thus $\mathrm{D}_{\text {free }}^{2}$ corresponding to the three outputs:
$D_{\text {free }}^{2}=C_{2}+C_{1}+C_{1}+C_{2}+C_{2}$

$$
\therefore=2+2-\sqrt{2}+2-\sqrt{2}+2+2=7.1716
$$

c) Current State/Next State/Output

$$
\begin{gathered}
000000 / 72 / 4101000 / 44 / 1010110022 / 10010110 / 11 / 2 \longrightarrow 0001011 / 5 / 1 \\
0000101 / 2 / 3 \longrightarrow 0000010 / 1 / 20000001 / 0 / 2 \quad 0000000
\end{gathered}
$$

Thus $D_{\text {free }}^{2}$ corresponding to the four transitions:
$D_{\text {free }}^{2}=C_{4}+C_{1}+C_{1}+C_{2}+C_{1}+C_{3}+C_{2}+C_{2}$

$$
\therefore \quad=4+2+\sqrt{2}+32-\sqrt{2}+6=15.1716
$$

Option (c) has path with least $D_{\text {free }}^{2}=7.1716$

$$
\begin{gathered}
\therefore \quad=10 \log - \\
10 \log \frac{7.1716}{2} \\
=5.546
\end{gathered}
$$

In Chapter Four each of these encoders will be simulated in a MATLAB Downlink model to ascertain its gain beforeit is integrated into the model for final simulation.

## CHAPTER FOUR

## COMPUTER SIMULATION FOR CODING GAIN

### 4.0 Introduction:

The Software used for computer simulation is MATLAB version R2010.
An RF Satellite Link Block Model shown in figure 4.1 obtained from RFlinksample in the softwareis adopted as a template for development of LEO satellite downlink. The template is modified to focus on coding gain and bandwidth utilization of Multi-level PSK modulation scheme.In MATLAB software digital modulation schemes are implemented and presented at baseband with no carrier component. The modulated signals are therefore presented as simple baseband envelope of signal constellation points. This makes the simulation to run faster since less computation is involved.[13]Communication Theory allowed digital modulated signal to be presented at baseband for purpose of Signal Analysis and Simulation, so that the linear translation of frequency due to modulation is ignored [5]. In this chapter all modulators and demodulators are therefore in baseband, and five level of MPSK modulation ( $M=2,4,8,16$ and 32 ) are treated. Since the measurements are centered on Power ( $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ ) against Bit Error Rate (BER), ぁertoolô simulation tool in the MATLAB is extensively used for all the simulations. A standard BER of $10^{-6}$ is adopted for all measurement, as it guarantee signal qualityfor remote sensing application.[1]
The chapter is divided into fourstages, in each stage certain category of simulations are performed. In stage 1, uncoded and convolution coded Theoretical MPSK linkmodels are simulated and plots of bit error rate(BER) against $E_{b} / N_{0}$ are obtained. Then, LEO Satellite Downlink block models are formed using a template model andsimulated. The aim in stage 1 is to compare performance of the block models with the theoretical. Parameter settings in the block models are fine-tuneduntil performance results that are comparable to theoretical are obtained. Convolution encoder/decoder block units are appliedto all themodels by specifying the appropriate polynomials. Thesimulation plots are superimposed for graphical comparison.In stage 2,TCM encoder/decoder block units areused to replaceConvolution encoder/decoder and MPSK modulation/demodulator block units in the downlink block models. The TCM models are simulatedfor BERagainst $\mathrm{E}_{b} / \mathrm{N}_{o}$ the plots are superimposed on the corresponding plots of stage 1.

In stage 3, the six multi-statesTCM encoders proposed in section 3.9 are discretely simulated in a downlink block model for the expected gain. Attempts were made simulate the proposed model as a whole, but due unavailability of Satellite Tracking sensor/switch in the MATLAB, the model wasmodifiedto usea multiplexer to replace the switch.

In Stage 4,MPSK models on convolution coding and TCM are simulated for data throughput. Simulation run time of4, 10 and17 minutesare used, which corresponds to the minimum, average and maximum LEO satellite visibility durations respectively are used.

## STAGE 1

### 4.1MATLAB Bit Error Rate Analysis Tool (bertool).

A tool usedin MATLAB for simulation of Bit Error Rate (BER) is called bertool. Itgenerates simulation results and plots of BER against specified range of $S N R$ or $E_{b} / N_{o}$. To open the bertool window,simply enter the word: 'bertool'on the MATLAB execute windows and the bertool window will open as shown in figure 4.1.

At the top of the window is the Data viewer for displaying simulation table of BER against $E_{b} / N_{o}$. Under the Data viewer are tabs for selecting three simulation method labeledTheoretical, Semi Analytical and Monte Carlo. [13]:
a) Theoretical Simulation is performedon a theoretical link is formed by specifying the following parameters in the bertool window:
i) Received Signal power $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range (0:36 dB)
ii) Channel type (AWGN, Rician and Raleigh)
iii) Modulution type (PSK, FSK, QAM)
iv) Modulation order (M)
v) Demodulation type (Hard or Soft)
vi) Channel Coding( Convolution or Block)/None)

The theoretical simulation is run when Plot tab is selected on the windows. A graph of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ is plotted by the software and stored. This method will be used extensively for comparison with block models in Stage I.
b) The second tab is Semi Analyticmethod, this is for simulation of a link model formed using MATLAB software codes. It is more flexible than the Theoretical method as it allows more link parameterssuch as antenna gain, amplification gain, filter parameters etc. to be specified usingMATLAB software codes. This method will not be used in this thesiswork as all models are formed using block units only.
c) The third method of BER analysis is on Monte Carlo tab, a link model is formed with block units in a MATLAB file, more detail link and block specific parameters are specified in each block unit. When Monte Carlo method is selected from bertool window, filename of the block model is specified and the simulation runs on the model at each specified SNR for specified number of errors. The simulation results from the block model is send to bertool Monte Carlo, as variables for plotting of BER versus $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ graph.This method will also be used extensively for BER simulations on block models.


Figure 4.01Bit Error Rate Analysis Tool (bertool) on MATLAB Execute window

### 4.2Simulation of Theoretical MPSK Links.

(a) Simulation of BPSK link

Theoretical tab is selected on the bertool window and the link parameters for BPSK scheme are entered as follows:
(i) $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{o}$ range: 0:18(dB)
(ii) Channel type: AWGN
(iii) Modulation type: PSK
(iv) Modulation order: 2
(v) Demodulation mode : Hard
(vi) Channel coding: None

## A click on plot tab

The bertool runs the simulation of uncoded BPSK link from $E_{b} / N_{o}=0$ to 18 dB in an AWGN channel with demodulation of hard decision type. A graph of $\mathbf{B E R}$ versus $\mathbf{E}_{\mathbf{b}} / \mathbf{N}_{\mathbf{o}}$ is plotted as shown in figure 4.2


Figure 4.2Plot of BER Versus $E_{b} / N_{o}$ for BPSK Downlink

Convolution code is selected on channel coding. An optimum encoding rate applicable to a BPSK scheme is input bit $\mathrm{k}=1$ and output bit $\mathrm{n}=2$.

A $1 / 2$-rate encoder is specified using poly2trellis (for more details refer to MATLAB literature) as follows:

Channel coding: Convolution; poly2trellis(5, [35 31])
Meaning constraint length $=5$,(total number of bits in the encoder at a timei.e. four register plus the current one bit input).

The MATLAB software requires only the polynomial to implement the coding. By clickingplot tab on bertool window, the simulation for the coded BPSK scheme is run and graph of BER versus $E_{b} / N_{0}$ is superimposed on plot of the uncoded BPSK, as shown in figure 4.2

## b) Simulation of QPSK Link

Theoretical tab is selected and QPSK link parameters are entered on the BERTool window as follows:

- $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range: 0:18
- Channel type: AWGN
- Modulation type: PSK
- Modulation order: 4
- Demodulation model : Hard
- Channel coding: None
- The uncoded link is simulated and graph of BER Versus $\mathbf{E}_{\mathbf{b}} / \mathbf{N}_{\mathbf{o}}$ is plotted as shown in figure 4.3
Convolution code is now selected on Channel coding,
The optimum encoder rate for QPSK isalso $1 / 2$ rate (since QPSK requires 2 bits input to run). The same polynomial is as in (a) above:
Channel coding: Convolution code
Poly2trellis: (5, [35 31])
The coded QPSK downlink is simulated and graph of BER Versus $\mathbf{E}_{b} / \mathbf{N}_{\mathbf{o}}$ is superimposed on plot of the uncoded link by bertool as shown in figure 4.3.
It is important to note the similarity in the plots of BPSK and QPSK both the uncoded and coded, this was derivedin chapter two on probabilities of error.


Figure 4.3Plot of BER Versus $E_{b} / N_{o}$ for QPSK Downlink

## c) Simulation 8-PSK link

Link parameters on 8-PSK are entered in the bertool window as follows:

- $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ range: 0: 18
- Channel type: AWGN
- Modulation type: PSK
- Demodulation mode: Hard
- Modulation order: 8
- Channel coding: None

The uncoded link is simulated and graph of $\mathbf{B E R}$ versus $\mathbf{E}_{b} / \mathbf{N}_{\mathbf{o}}$ is plotted by bertool as shown in figure 4.4.
On the bertool window, convolution code is selected under channel coding tab as :
Channel coding: Convolution


Figure 4.4 Plot of BER versus $E_{b} / N_{o}$ for 8-PSK Downlink
A 2/3-rate encoder is selected as optimum rate to feed the 3-bit 8PSK modulator. MATLAB trellis structure for such code is given as:

Poly2trellis([3 2], [7 4 0; 02 3])
In this case the Constraint length of the encoder from two input lines is $3+2=5$, meaning that on the first input line there are 2 bits in two registers plus current bit and on the second input line1bit in one register plus current bit.
The code generators are specified in octal using a $3 \times 2$ matrix. The two rows on the matrix specifies connections from each input lines, while the columns specifies connections to three modulo-2 adder that produces 3 bits output.

> 740
> 023

Thus code generators are $g_{1}=[7,0]=[111,00] ; g_{2}=[4,2]=[100,10]$ and $\mathrm{g}_{3}=[0,3]=[000,11]$.

The link is simulated and graph of $\mathbf{B E R}$ Versus $\mathrm{E}_{\mathrm{b}} / \mathbf{N}_{\mathrm{o}}$ is superimposed on plot of the uncoded 8-PSK by bertool as shown in figure 4.4.
d) Simulation of16-PSKlink

Link parameters on 16-PSK scheme are entered in the bertool windowfor theoretical simulation as follows:

- $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range: 0:22
- Channel type: AWGN
- Modulation type: PSK
- Modulation order: 16
- Demodulation model:Hard


Figure 4.5Plot of BER versus $E_{b} / N_{o}$ for 16-PSK Downlink

The uncoded link is simulated and graph of $\mathbf{B E R}$ Versus $\mathbf{E}_{\mathrm{b}} / \mathbf{N}_{\mathbf{o}}$ is plotted by bertool as shown in figure 4.5.
On the bertool window, channel coding is selected and convolution code is entered. A $3 / 4$ rate encoder is selected as optimum to feed 4 -bit 16 PSK modulator. The MATLAB trellis structureof the code isas follows:
Channel coding: Convolution
Poly2trellis([2 2 2], [3 20 0; 260 1; 00 3 2])
The code generators which specifies contribution of each line input (in octal) to the four modulo-2 adders on the output lines are in $4 \times 3$ matrix.

$$
3200
$$

$=2601$
0032
$g_{1}=[3,2,0]=[11,010,00] ; g_{2}=[2,6,0]=[10,110,00] ; \quad g_{3}=[0,0,3]=[00,00,11]$ and $g_{4}=[0,1,2]=[00,001,10]$
Here the constraint length of the encoder is [2+3+2], meaning that there is 1 bit in a register plus current input bit on the first input line, 2 bits in two registers plus current bit on second input line and 1bit in a register plus current bit on the third input line.
The coded link is simulated and the graph of BER Versus $\mathbf{E}_{\mathrm{b}} / \mathbf{N}_{\mathbf{o}}$ is superimposed on plot of the uncoded16-PSK as shown in figure 4.5.

## e) Simulation of 32-PSK link

Link parameters on 32-PSK scheme are entered in the bertool window for theoretical simulation as follows:

- $\mathrm{E}_{b} / \mathrm{N}_{\mathrm{o}}$ range: 0:22
- Channel type: AWGN
- Modulation type: PSK
- Modulation order: 32
- Demodulation mode:Hard

The uncoded link is simulated and graph of $\mathbf{B E R}$ Versus $\mathbf{E}_{\mathrm{b}} / \mathbf{N}_{\mathrm{o}}$ is plotted by bertool as shown in figure 4.6


Figure 4.6 Plots of BER versus $E_{b} / N_{o}$ for 32-PSK
On the bertool windows, channel coding is selected and convolution code is entered. A $4 / 5$ rate encoder is selected as optimum to feed 5 -bits 32-PSK modulator. The MATLAB trellis structure of the code is as follows:
Channel coding: Convolution
poly2trellis([3 232 ], [5 020 1; 030 11; 1050 1; 020 31])
The code generators that specifies contribution of each input line to each modulo-2 adder on the 5 output lines are in $5 \times 4$ matrix

$$
\begin{array}{r}
50201 \\
=\begin{array}{r}
03011 \\
10501 \\
02031
\end{array}, ~
\end{array}
$$

$$
\left.\begin{array}{ll}
g_{1}=[5,0,1,0]=[101,00,001,00] ; & g_{2}=[0,3,0,2]=[000,11,000,10] ; \\
=[010,00,101,00] ; & g_{3}=[2,0,5,0] \\
=[1,1,1,1]=[001,01,001,01] . & g_{4}=[0,1,0,3]=[000,01,000,11]
\end{array} \text { and } g_{5}\right)
$$

Here the constraint length is $[3+2+3+2]=10$, meaning that there are 2 bits in two registers plus current input bit on the first input line, 1 bit in a register plus current input bit on the second input line, 2 bits in two registers plus current input bit on the third input line and 1bit in a register plus current input bit on the fourth input line.

Channel coding is re-selected and convolution coding is entered. The coded link is simulated and the graph of BER Versus $E_{b} / \mathbf{N}_{0}$ is superimposed on plot of the uncoded32-PSK as shown in figure 4.6.

### 4.3MATLAB DownlinkTemplate Model

An RF satellite downlink block model shown in figure 4.7is selected from MATLAB link samples and adopted as template for building downlink block models in this research work. The model comprises of three sections, on-board transmitting section, downlink pathand Ground station receiving section.
The transmitting section is made up of: Random integer generator used as data source for the link; Rectangular 16-QAM as digital modulator; square root raised cosine (RRC) filter as transmit filter; Saleh model (see APENDIX B)amplifier as high power amplifier (HPA); antenna gain block as transmitter antenna.


Figure 4.07MATLA $\bar{B}$ RF Satellite Downlink Template Model

The down path or channel section is made up of: Free space loss, Doppler effect and Phase error blocks. The receiving section is made up of antenna gain block as receiving antenna; satellite receiver system noise temperature block as equivalent noise temperature of the receiving system; other impairment blocks arephase noise block, inphase and quadrature imbalance block, DC removal block, AGC block, phase offset block to compensate for Doppler and phase noise; Square Root Raised Cosine Filter block as receiver filter and rectangular 16QAM demodulator as discriminator.

Some measurements blocksused on the model are: Power spectrum block to measure signal bandwidth; Scatter plot block to display signal constellations and a Communication sink Display block to count the Total number of demodulated bits, Number of received errors and compute Bit Error Rate (BER).

The simulation in this work is on Bit error rate (BER) performance against received $S N R$ or $E_{b} / N_{0}$ and bandwidth utilization of MPSK downlink. The template model is modified to focus and measure the effect of coding gain on SNR or $\mathrm{E}_{b} / \mathrm{N}_{o}$ and bandwidth utilization on data rate.

### 4.4 Building MATLAB Downlink Block Model

To build downlink block model, functionalunit blocks are obtained from Communication blockset library of the MATLAB, while blocks for measurement and display are obtained from Simulink and Signal Analysis blockset Libraries. The modification on the template is shown in figure 4.8 and realized as follows:

In the Transmitter Section:A Random Integer Generator block, in conjunction with an Integer-to-Bit Converter block are used to form a Data Source. An MPSK Baseband Modulator block is used as a Modulator block and a Transmit Square Root Raised Cosine (RRC) Filter block is used for pulse shaping.An AWGN block is usedas channel for transmission (the downlink channel has been characterized as an AWGN channel in Chapter Two). In MATLAB received SNR or $E_{b} / N_{o}$ can be specified among the parameters in the AWGN block, this means for our simulation purpose the transmitter HPA, transmit/receive


Figure 4.8A Convolution Coded QPSK Downlink Block Model
antenna gains and all other transmission losses are combined by specifying the delivered $\operatorname{SNR}$ or $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ at the receiver terminal. In the receiver section:Receive Square Root Raised Cosine Filter block is used to compliment the Transmit RRC filter (see appendix A). MPSK Baseband Demodulator block is used as Demodulator.

Some measuring blocks used are: Find Delay block to measure the delay between received and transmitted signal bits this is necessary in counting bit errorreceived. Error Calculation block is used to measure total number receive bits i.e. Data Throughput, Number of Received Errors and computation of Bit Error Rate (BER), thesemeasured parameters are sent to a Display Unit block and a Signal to Workspace block for Monte Carlo bertool simulation.

The parameter settings on each block unit are given below using a QPSK downlink as example.[13]
1.Data Source Block:

- Random Integer Generator Block set $\mathbf{M}=4$.
- Sampling TimeT $\mathbf{S}_{\mathrm{s}}=0.2 \mu \mathrm{~s}$
- Integer to Bits Converter Block specify Number bits per input integer (symbol) k=2

2. Baseband Modulation Block:

- MPSK; $\mathbf{M}=4$
- Constellation order = (Binary/Gray)
- Input Data type:Binary bits

3. Square Root Raised Cosine (RRC) Transmit Filter block:

- Upsampling rate ; $\mathbf{N}=\mathbf{2}$ (minimum sampling rate)
- Roll ï off factor; $\alpha=0.1$ (range: $0-1$ )
- Group delay =3

4. AWGN Channel block: The AWGN block is used as means of specifying Received Signal Power to Noise Ratio in three modes: Signal Power to Noise Power Ratio SNR;Energy per Symbol to Spectral Noise Power density ratio $\mathbf{E}_{\mathbf{s}} / \mathbf{N}_{\mathbf{o}}$; and Energy per bit to Spectral Noise Power density ratio $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$.

- Mode (of specifying power); $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}(\mathrm{dB})$
- Input Signal power( watts) referenced to $1 Y$ Ý $=1 / \mathbf{N}=0.5$ [13]
- Number of bits per symbol: $\mathbf{n = 2}$ ( $\mathrm{n}=\mathrm{k}$ for uncoded)
- Transmission Symbol Period $\mathrm{T}_{\text {sym }}=\mathrm{T}_{\mathrm{s}} \mathrm{N}=0.2 \times 2=0.4 \mu \mathrm{~s}$

5. Square Root Raised Cosine Receive Filter Block:

- Input Sample per Symbol; $\mathbf{N}=\mathbf{2}$
- Group delay = 3
- Roll-off factor: $\mathbf{\alpha}=\mathbf{0 . 1}$
- Downsampling factorL = 2

6. Baseband Demodulator Block:

- Phase offset (constellation phase offset = pi/4 for QPSK)
- Constellation ordering; Binary/Gray
- Output type; Bits
- Decision mode; Hard/Soft : Hard for Bitsand Soft for Integer output type

7. Find Delay Block:

- Correlation window length (Number of sample) $=200$ Delay output is sent to a Display block.

8. Error Rate Calculation Block: Compares the received data with data transmitted to compute error between the two, the transmitted datais delayed for proper alignment. The parameters to set are:

- Receive Delay = Output of Find Delay block on Display 2
- Computation Delay = No. of samples to be delayed ( set to ignore transient effect at beginning ofcomparison)
These outputare send to:
i) Display Block:

Shows

- Number of Comparison = Number received bits
- Number of Errors from the comparison;
- Bit Error Rate = Number of received bits/Number of Errors
ii) MATLAB workspace with BER as variable for Monte Carlos simulation.


### 4.4.1Settings forMonte Carlo Simulation

To simulate block models using Monte Carlo method, the following steps are applied:
a) On the block model built as described in section 4.4 andthe following changes are made:

- On Modulator/Demodulator Blocks set $\mathbf{M}=\mathbf{2}^{\mathrm{k}}$ for uncoded andM $=2^{n}$ for coded(k/n-rate) model.
- In the Modulator/Demodulator block, set input/output type tobits.
- In the AWGN block, the set parameter $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ to EbNo.
- In the Error Calculation block as part of the iteration process, set the MaximumNumber of Symbol to stop at maxNumBits and Target Number of Errors to stop at maxNumErrs.
- In the Signal to Workspace block connected to send results to Monte Carlo, theVariable name is set as BER.
The block model with its settings is saved as a File.
b) On the MATLAB execute command windows the iteration values are specified as:
EbNo = 0; maxNumErrs = 100; maxNum Bits = 1e8;
This command indicate that iterative simulation starts at $E_{b} / N_{o}=0$ and stops each time number of errors $=100$ or number of received bits $=10^{8}$.
c) The BERTool window is opened and Monte Carlotab is selected. The simulation parameters are entered as follows:
- $\quad \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range:Start : Iteration step : Stop values
- Simulation MATLAB Filename of block model: ‘.... ‘
- Variable name:BER.

The following MPSK block models are simulated using Monte Carlo as specified above.

### 4.5 Simulation of MPSK Downlink Block Models

## a) QPSK Downlink Block Model

An uncoded QPSK downlink block model is built as shown in figure 4.12 without the Encoder and Decoder blocks, the parameter settings are as follows:

- In Random Integer Generator block; set Integer M = 4 to generate Integer (0,1,2and3).
- In Integer to Bit Converter Block specify Number bits per input integer (symbol) $\mathbf{k}=\mathbf{2}$.
- In QPSK Baseband Modulator/Demodulator block; set Input/Output type to bits and constellation set to binary.
- In AWGN Channel Block; set Number of bits per symbol = 2 and $E_{b} / \mathrm{N}_{0}=$ EbNo.
- In Error Calculation block; setReceive Delay = 14 (measured from Find Delay block on test run simulation of the model) andStop simulation set to = maxNum Errs or maxNumBits.
- In Signal to Workspace block; set Variable name to BER

The model is saved with name qpsk1.
The BERTool window is opened and Monte Carlo tab is selected. The simulation parameters are entered as follows:

- $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range:0: 2: 18
- Simulation MATLAB File : qpsk1
- Variable name:BER

The simulation is run and its result is a graph of BER Versus $\mathrm{E}_{b} / \mathrm{N}_{\mathrm{o}}$ superimposed on that of Theoretical QPSK as shown in figure 4.4 Convolution Encoder and Decoder blocks are added to the model before the modulator and after demodulator blocks respectively, with same coding structure as used on Theoretical link in section 4.2(b), i.e.

- In Encoder/Decorder blocks Polynomial set at: poly2trellis(5, [35 31])

The coded model is test run and new Receive delay is measured and adjusted

- In Error Calculation block; set Receive delay=41(measured)

The coded QPSK model formed is saved with filename'qpsklink2', Monte Carlo simulation run on it. Its BER performance plot is also superimposed on the plots of figure 4.3 and the constellation of modulated signal envelope is shown in figure 4.9.The dispersion of signal pointson each symbolin the constellation is measure of noise level taken at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=10.7 \mathrm{~dB}$. It isthe ability ofQPSK demodulator to discriminate each signal point correctly and the convolution decoder to correct any error that is measured as BER of the link.


Figure 4.9ConvolutionCoded QPSK Constellation at $E_{b} / N_{o}=10.7 \mathrm{~dB}$
(b) 8-PSK Block Model

An 8-PSK block model is built with the following changes insome affected blocks:

- $\mathbf{M}=8$
- Number of bits per symbol $\mathbf{k}=\mathbf{3}$
- 8-PSK Baseband Modulator/Demodulator. Input/Output:Bits and Constellation:Binary
- AWGN Channel Block; Number of bits per symbol = 3; $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=\mathrm{EbNo}$
- Receive Delay = 18(measured)

The uncoded model is saved as 'psk8link1' as in (a) above.
BERTool window is opened and Monte Carlo tab is selected.
Parameters for simulation are entered as follows:

- $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range:0: 2: 18
- Simulation MATLAB File : psk8link1
- Variable name:BER

Monte Carlo simulation is run on the uncoded 8 -PSK model and its BER performance plot is shown in figure 4.5 .
Convolution encoder/ Viterbi decoder blocks of $2 / 3$ rate are added, with same MATLAB Trellis structure as in section 4.2(c)and the following necessary changes are made:

- Random Integer Generator M=4 (To match the 2-bit encoder input)
- Encoder/Decorder blocks: poly2trellis( [3 2], [7 4 0; 02 3])
- Error Calculation Block: Receive Delay $=62$ (Measured)

The coded model formed is saved as 'psk8link2' and Monte Carlo simulation run on it. Its performance plot is also superimposed on the plots of figure 4.4 and signal constellation of 8 -PSK link is shown in figure 4.10.


Figure 4.10Coded Modulated 8-PSK Constellation at $E_{b} / N_{o}=14.5 \mathrm{~dB}$
The dispersion of signal points on each symbol in the constellation is measure of noise level taken at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=14.5 \mathrm{~dB}$. It isthe ability of 8 -PSK demodulator to discriminate each signal point correctly and the convolution decoder to correct any error that is measured as BER of the link.

## (c) 16-PSK Block Model

An uncoded 16-PSK model is built with following parameter settings:

- Random Integer Generator Block: $\mathbf{M}=16$
- In Integer to Binary Converter Block: k=4
- 16-PSKModulator/Demodulator: Input/Output:Bits and Constellation:Binary;
- AWGN Channel Block:Bits per symbol = 4 and $E_{b} / N_{o}=$ EbNo
- Error Calcualation Block:Receive Delay $=44$ (measured)

Stop simulationa set at maxNumErrsormaxNumBits.

- In Signal to Workspace block; set Variable name to BER.
- The uncoded model is saved as 'psk16link1'.

BERTool window is opened and Monte Carlo tab is selected. The simulation parameters are entered as follows:

- $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range:0: 2: 18
- Simulation MATLAB File : psk16link1
- Variable name:BER

Monte Carlo simulation is run on the uncoded 16-PSK block model and its BER plot is shown in figure 4.6.

Convolution encoder/ decoder blocks are added, with same MATLAB Trellis structure as the Theoretical 16-PSK link in section 4.3(d) and the following necessary changes are made:

- Random Integer Generator Block: $\mathbf{M}=8$ ( for 3/4-rate encoder )
- Integer to Bit Converter Block: k= 3
- Encoder/Decoder Blocks:

Poly2trellis([2 3 2],[3 20 0; 260 1; 003 2]).

- Error Calculation Block: Receive Delay=63(Measured)

Stop simulation set at maxNumErrsormaxNumBits.

- The coded model is saved as 'psk16link2'

The simulation is run on the model and BER performance plots is superimposed on that of Theoretical uncoded and coded 16-PSK as shown in figure 4.5. Its Signal constellation is shown in fig 4.12.
The dispersion of signal points on each symbol in the constellation is measure of noise level taken at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=19.5 \mathrm{~dB}$. It is the ability of $16-\mathrm{PSK}$ demodulator to discriminate each signal point correctly and the convolution decoder to correct any error that is measured as BER of the link.


Figure 4.11ConvolutionCoded 16-PSK Constellation at $E_{b} / N_{o}=19.5 d B$

## (d) 32-PSK Block Model

An uncoded 32-PSK block model is built with parameters settings of:

- Random Integer Generator Block: $\mathbf{M}=32$
- In Integer to Binary Converter Block: k=5
- 32-PSKModulator/Demodulator Block Input/outputtype: Bitsand Constellation:Binary
- AWGN Channel Block: Bits per symbol=5; $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=\mathrm{EbNo}$
- Error Calculation Block :Receive Delay = 30(measured)

Stop simulation:maxNumErrsormaxNumBits

- Signal to Workspace Block; Variable name : BER

Monte Carlo tab is selected. Its simulation parameters are :

- $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ range:0: 2: 18
- Simulation MATLAB File : psk8link1
- Variable name:BER

Monte Carlo simulation is run on the uncoded 32-PSK model and its BER performance plot is shown in figure 4.7).
Convolution encoder/ decoder blocks of $4 / 5$ are added, with same MATLAB Trellis structure as link in section 4.2(e) and the following necessary changes are made:

- Random Integer Generator Block: M = 16(to match 4-bit input of the encoder )
- Integer to Bit Converter Block: Number of bit/integer = 4
- Encoder/Decoder Blocks:
poly2trellis([3 23 2],[5 020 1; 030 11;10501; 0203 1])
- Error Calculation Block: Receive Delay= 84 (Measured)

Stop simulation set at maxNumErrsormaxNumBits

The coded model is saved as 'psk32link2' and Monte Carlo simulation is run on it. Its BER performance plot is superimposed on figure 4.6. Modulated signal constellation of 32 PSK link is shown in figure 4.12.The dispersion of signal points on each symbol in the constellation is measure of noise level taken at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=28.5 \mathrm{~dB}$. It isthe ability of $32-\mathrm{PSK}$ demodulator to discriminate each signal point correctly and the convolution decoder to correct any error that is measured as BER of the link.


Figure 4.12ConvolutionCoded 32-PSK constellation $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0} 28.5 \mathrm{~dB}$
Summary of $E_{b} / N_{o}$ performances at BER of $10^{-6}$ for the uncoded and convolution coded and TCM on MPSK downlink block models are shown in table 4.1.

Table 4.1Performance Summary ofUncoded, Convolution Coded and TCM on MPSKDownlinkBlock Model atBER $=10^{-6}$

| MPSK <br> Scheme | Inputk <br> bits | Data <br> Rate <br> $($ Mbps $)$ | Uncoded <br> MPSK <br> $\mathbf{E}_{\mathbf{b}} / \mathbf{N}_{\mathrm{o}}(\mathrm{dB})$ | Convolution <br> Coded <br> MPSK <br> $\mathbf{E}_{\mathrm{b}} / \mathbf{N}_{\mathrm{o}}(\mathrm{dB})$ | TCM/MPSK <br> $\mathbf{E}_{\mathbf{b}} / \mathbf{N}_{\mathrm{o}}(\mathrm{dB})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BPSK | 1 | 5 | 13.5 | 10.7 | N/A |
| QPSK | 2 | 10 | 13.5 | 10.7 | 7 |
| 8-PSK | 3 | 15 | 15.5 | 14.5 | 9.8 |
| 16 PSK | 4 | 20 | 20.4 | 19.5 | 13 |
| 32 PSK | 5 | 25 | 29.5 | 28.5 | 18.2 |

Notethe comparative advantages onpower, the coding gain would be calculated in chapter5.

All the simulations were conducted at symbol rate of $5 \times 10^{6}$ symbol per seconds, each occupied bandwidth of 5.5 MHz as shown in figure 4.13. The transmission data rates on each MPSK scheme are shown in table 4.2.


Figure 4.13Spectrum Scope of Convolution Coded 32-PSK at 5.5 MHz
Table 4.2Data Rate ofUncoded, Convolution Coded and TCM on MPSK DownlinkBlock Model MPSK at $5 \times 10^{6} \mathrm{Sps}$ andbandwidth 5.5 MHz .

| MPSK <br> Scheme | Input <br> k bits | uncoded <br> Data <br> Rate <br> $(M b p s)$ | Code <br> Rate <br> $\mathrm{k} / \mathrm{n}$ | Data Rate of Convolution <br> Coded and TCM |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Coded <br> (Mbps) | Decoded <br> (Mbps) |  |  |  |
| BPSK | 1 | 5 | $1 / 2$ | 5 | 5 |
| QPSK | 1 | 10 | $1 / 2$ | 10 | 5 |
| 8-PSK | 2 | 15 | $2 / 3$ | 15 | 10 |
| 16P SK | 3 | 20 | $3 / 4$ | 20 | 15 |
| 32PSK | 4 | 25 | $4 / 5$ | 25 | 20 |

Note the difference in data rate between uncoded and coded, and its improvement with higher MPSK.

## STAGE 2

### 4.6 Simulations of TCM/MPSK Downlink Block Model

A block unit that combine and perform function of Trellis Coded Modulation (TCM) is also available in MATLAB Communication blockset library. A Downlink Block Model is built by replacing the Convolution Encoder and MPSK modulator blocks in figure 4.3 with a single TCM/MPSK that combines the functions of the two. Similarly MPSK Demodulator and Viterbi Decoder blocks are replaced with a single TCM Decoder block. A Downlink block model on TCM/MPSK scheme is shown in figure 4.14.The Monte Carlo simulation is run on TCM/MPSK block model for BER performance evaluation and comparison with that of convolution coding/MPSK scheme as follows:
a) TCM/QPSK on Downlink Model

A TCM/QPSKencoder block is used to replace the Convolution encoder /QPSK modulator blocks, and a TCM/QPSK decoder block is used to replace the demodulator and Viterbi decoder blocks. The TCM encoder and decoder blocks are set with same parameters as in section 4.5(a) viz ;

Trellis coded Modulation structure = poly2trellis(5,[35 31])
Modulation/Demodulation order $\mathbf{M}=\mathbf{4}$
Thus, a TCM/QPSK Downlink model is formed as shown in figure 4.14 and saved as 'qpsktcm'. The model is run on Monte Carlo simulation, the BER performance plot is superimposed on the plot in figure 4.3 and its signal constellation taken at $E_{b} / N_{o}=7 \mathrm{~dB}$ is shown in figure 4.15 (b),

## b) TCM/8-PSK/TCM on Downlink Model

A TCM/8PSKencoder block is used to replace the convolution encoder /modulator blocks andTCM/8-PSKdecoder block is used to replace the demodulator and Viterbi decoder blocks in section 4.5(b). The TCM encoder and decoder are set as in section 4.5(b):

Trellis coding structure = poly2trellis([3 2], [7 4 0; 02 3])
Modulation order M = $\mathbf{8}$





Figure 4.15TCM-QPSK Constellation at $E_{b} / N_{o}=7 d B$
Theblock model formed issaved as 'tcm8psk'. The model is run on Monte Carlo simulation, itsBER plot is superimposed on plots in figure 4.4 andsignal constellation is taken $a t E_{b} / N_{o}=9.5 \mathrm{~dB}$ is shown in figure 4.16.
c) TCM/16-PSK on Downlink Block Model

A TCM/16-PSKencoder block unit is used to replace convolution encoder and 16-PSK modulator blocks while a TCM/16-PSK decoder block unit is used to replace the demodulator and viterbi decoder blocks of section 4.5 (c). The TCM encoder and decoder blocksare set with parameters as in section 4.5 (c);

Trellis structure = poly2trellis ([2 3 2], [3 20 0; 260 1; 003 2 2])


Figure 4.16TCM/8-PSK Signal Constellation at $E_{b} / N_{o}=9.5 d B$

## Modulation order $\mathbf{M}=16$

The TCM block model formed is saved as 'tcm16psk'. The model is run on Monte Carlo simulation, its BER plot is superimposed on that in figure 4.5 and signal constellationtaken at $\mathrm{E}_{b} / \mathrm{N}_{0}=13.0 \mathrm{~dB}$ is shown in figure4.17
d) TCM/32-PSK on Downlink Block Model

A TCM/32-PSK encoder block unit is used to replace convolution encoder and a 32-PSK modulator blocks and a 32-PSK/TCM decoder block unit is used to replace the demodulator and viterbi decoder blocks of section 4.5 (d). The TCM encoder and decoder blocks are set as in section 4.5(d):
Trellis coding structure $=$
poly2trellis([3 23 2], [5 020 1;0 301 1; 1050 1; 0203 1])
Modulation order $\mathbf{M}=\mathbf{3 2}$


Figure 4.17TCM/16-PSK Signal Constellation at $E / N=13.0 \mathrm{~dB}$
The TCM model formed is saved as 'tcm32psk'. The model is run on Monte Carlo simulation, its BERplot is superimposed on that in figure 4.6 and its signal constellationtaken at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=18.2 \mathrm{~dB}$ is shown in figure 4.18.

Summary of $E_{b} / N_{\circ}$ performances at BER of $10^{-6}$ forall the TCM/MPSK downlink block models simulated arein table 4.3

Table 4.3Performance Summary of TCM/MPSK on Downlink Block Model at BER $=10^{-6}$

| $S / N$ | TCM/MPSK | SimulatedE $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}(\mathrm{~dB})$ |
| :--- | :--- | :--- |
| 1 | TCM/QPSK | 7 |
| 2 | TCM/8-PSK | 9.5 |
| 3 | TCM/16-PSK | 13.5 |
| 4 | TCM/32-PSK | 18.2 |



Figure 4.18TCM/32-PSK Signal Constellation at $E_{b} / N_{o}=18.2 d B$

## STAGE 3

### 4.7 Discrete Simulations of Multi-StateTCM/8-PSKEncoders

The conceptual model in section 3.5.1 on TCM/8-PSK is designed to take advantage of variation of coding gain among the six encoders. The model is expected to provide coding gain variations of 3 to 5.4 dB . An un coded QPSK was simulated again and its BER plot shown in figure 4.20. Each of the six encoders wasdiscretely simulated in a LEO Downlink model of figure 4.19 and the BER plots are superimposed on that of uncoded QPSKto measure coding gain.
a) 4-State Transition TCM/8-PSK

The TCM encoder/decoder blocks of figure 4.19 were set with the polynomial of 4-State Transition TCM/8-PSK obtained in section 3.10(a) as:
trellis = poly2trellis([3 1],[0 7 1; 1000$]$ )
The ळertoolôsimulation was conducted on the model and the BER plot obtained is shown in figure 4.20. From the plot at $\operatorname{BER}=10^{-6}$, the results are $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=10.8 \mathrm{~dB}$ for 4 -State TCM against $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=13.5$ for uncoded QPSK, these are recorded in table 4.4

Figure 4.19TCM/8-PSK Downlink Block




Figure 4.20BER Versus Eb/ $N_{0}$ plot for a 4-State TCM/8-PSK
b) 8-State Transition TCM/8-PSK

The TCM encoder/decoder blocks of figure 4.19 were set with the polynomial of 8-State Transition TCM/8-PSK obtained in section 3.10(b) as:
trellis = Poly2trellis ([2 3], [0 3 1; 403 ] )

The ळertoolôsimulation was conducted on the model and the BER plot obtained is shown in figure 4.21. From the plot at $\operatorname{BER}=10^{-6}$, the results are $\mathrm{E}_{b} / \mathrm{N}_{0}=10.3 \mathrm{~dB}$ for 8 -State TCM against $\mathrm{E}_{b} / \mathrm{N}_{0}=13.5$ for uncoded QPSK, these are recorded in table 4.4


Figure 4.21BER Versus $E_{b} / N_{0}$ plotfor a 8-State TCM/8-PSK
c) 16-State Transition TCM/8-PSK

The TCM encoder/decoder blocks of figure 4.19 were set with the polynomial of 16 -State Transition TCM/8-PSK obtained in section 3.10(c) as:
trellis = poly2trellis([2 4],[0 3 1; 1015 5])
The ळertoolôsimulation was conducted on the model and the BER plot obtained is shown in figure 4.22. From the plot at $\operatorname{BER}=10^{-6}$, the results are $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=9.2 \mathrm{~dB}$ for16-State TCM against $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=13.5$ for uncoded QPSK, these are recorded in table 4.4
d) 32-State Transition TCM/8-PSK

The TCM encoder/decoder blocks of figure 4.19 were set with the polynomial of 32 -State Transition TCM/8-PSK obtained in section 3.10(d) as:
trellis = poly2trellis([3 4],[0 5 3; 10113$]$ )
The ぁertoolôsimulation was conducted on the model and the BER plot obtained is shown in figure 4.23. From the plot at $\operatorname{BER}=10^{-6}$, the results are $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=8.8 \mathrm{~dB}$ for 32 -State TCM against $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=13.5$ for uncoded QPSK, these are recorded in table 4.4.


Figure 4.22BER Versus $E_{b} / N_{o}$ plotfor a 16 -State TCM/8-PSK


Figure 4.23BER Versus $E_{b} / N_{o}$ plot for a 32-State TCM/8-PSK
e) 64-State Transition TCM/8-PSK

The TCM encoder/decoder blocks of figure 4.19 were set with the polynomial of 64-State Transition TCM/8-PSK obtained in section 3.10(e) as:
trellis = poly2trellis([4 4],[0 11 7; 104 3])
The ळertoolôsimulation was conducted on the model and the BER plot obtained is shown in figure 4.24. From the plot, at $B E R=10^{-6}$ the results are $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=8.5 \mathrm{~dB}$ for 64-State TCM againstE $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=13.5$ for uncoded QPSK, these are recorded in table 4.4


Figure 4.24BER Versus $E_{b} / N_{o}$ plot for a 64-State TCM/8-PSK
f) 128-State Transition TCM/8-PSK

The TCM encoder/decoder blocks of figure 4.19 were set with the polynomial of 128-State Transition TCM/8-PSK obtained in section 3.10(f) as:
trellis = poly2trellis([5 4],[0 23 14; 1015 3])

The ळertoolôsimulation was conducted on the model and the BER plot obtained is shown in figure 4.25. From the plot at $\operatorname{BER}=10^{-6}$, the results are $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=8.2 \mathrm{~dB}$ for 128 -State TCM against $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=13.5$ for uncoded QPSK, these are recorded in table 4.4


Figure 4.25BER Versus $E_{b} / N_{0}$ plot for a 128-State TCM/8-PSK

Table 4.4Performance Summary of Discrete Simulationof Multi-state Encoders
On Downlink Block Model at BER $=10^{-6}$

| S/N | Multi-State <br> Encoder | SimulatedE $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}(\mathrm{~dB})$ |
| :--- | :--- | :--- |
| 1 | 4-State | 10.8 |
| 2 | 8 -State | 10.3 |
| 3 | 16-State | 9.2 |
| 4 | 32 -State | 8.8 |
| 5 | 64-State | 8.5 |
| 6 | 128-State | 8.2 |

### 4.8Modification and Simulation of the Conceptual Model

Allbuilding units for the conceptual model have been simulated and found to be functional, except theTracking Switch whose functionis to track and tap the encoders for few minutes during LEO Satellite passage. In an effort to find areplacement for the Tracker,the simulation software rejected a Timer switch because of prolong delay in switching as only few microsecondsare accepted (i.e.in few multiple of source sampling time $T_{s}$ ).
Butsincethe objective is to compensate for varying transmission losses and simulate all the encoders under same BER $\mathrm{E}_{b} / \mathrm{N}_{\mathrm{o}}$, the model was modified to incorporate the variation.
The model was simulated with the six TCM encoders concurrently switched ON and the expected Free Space Loss for each encoder was insertedalong itstransmission path. The encoder outputs together with insertion losesare combined in a Frequency Multiplexer using Vector Concatenated block (no carrier frequency isused) asshown in the figure 4.26. The composite was then passed through transmit RRC filter and at AWGN block a uniformE ${ }_{b} / \mathrm{N}_{0}$ is applied on the composite. At this level the power of each signal in the composite is a combination of the uniform $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ and its inserted loss. The received composite was then filtered by receiver RRC filter block and then demultiplexed. The BER from each channel decoder is now a function of the inserted loss, the uniform $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ applied and the coding gain in that channel. When a baseline coding gain of 3dB (4-state coding gain) is assumed on each encoder and any extra or differential gain is removed as Free Space Loss insertion, these are recorded in table 4.5.

Table 4.5Simulated FSL Insertion on Multiplexed Multi-StateDownlink Model.

| S/N | Multi-State <br> Encoder | Simulated Insertion Loss (dB) |
| :--- | :--- | :--- |
| 1 | 4-State | 0.0 |
| 2 | 8-State | 0.5 |
| 3 | 16-State | 1.6 |
| 4 | 32 -State | 2.0 |
| 5 | 64-State | 2.3 |
| 6 | $128-$ State | 2.6 |

All encoders in the model were simulated at uniform $E_{b} / N_{0}$ of 10.8 dB and coding gain of 3dB, while each inserted loss was iteratively adjusted until BER of $10^{-6}$ is obtained from all the decoders. Such that Uniform Data Rate was achieved at uniform $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ and BER.


## STAGE 4

### 4.9Data ThroughputMeasurementsfor Optimisation

In stage1,2 \&3 MATLAB bertool is used to simulate the relationship between received power ( SNR or $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ ) and BERin convolution coding and Trellis coded modulation. The simulations were done at same symbol rate using source sampling time $\mathbf{T}_{\mathbf{s}}=\mathbf{0 . 2 \mu s}$, thus using same bandwidth $\mathrm{B}=\mathbf{5 M H z t h r o u g h o u t .}$

In this section bertool is not used, instead the simulations are performed directly on the open file ofdownlink block model. Simulation run time of 4,10 and 17 minutes are used, which corresponds to the minimum, average and maximum communication periodrespectively (as in table 2.02). The parametersto measure are:
i) Occupied Bandwidth ( $\mathbf{B}_{\text {occ }}$ in MHz ) signal to be measured using MATLAB spectrum scope display.
ii) Received $\operatorname{SNR}$ (or $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ in dB ) to be adjusted in AWGN block to attain at $\mathrm{BER}=10^{-6}$.
iii) Simulation run time T ( scaled version of real clock time) to be displayed on the running file Task bar
iv) Number of decoded bits received for within the specified period (4,10 and 17minutes) to be displayed on Error Calculation Block .
The variable parameterfor thissimulation is transmission symbol rate $R_{s}$, this is specified by Data Source Sampling Time $\mathbf{T}_{\mathbf{s}}$ in Random Integer Generator Block, such that symbol rate $R_{s}=1 / \mathrm{T}_{\mathrm{s}}$.

## (A) Uncoded MPSK on Downlink Block Models

Uncoded BPSK/QPSK/8-PSK/16-PSK/32-PSK downlink models are formed as in section 4.4 and the simulations are performed as follows:
Simulation Benchmarks:
i) Data Source sampling time $T_{s}=2 \times 10^{-7} \mathrm{~s}$ or Symbol rate $R_{\mathrm{s}}=5 \times 10^{6} \mathrm{sps}$
ii) SNR for each model is adjusted until Bit Error Rate BER = $10^{-6}$.
iii) RRC filter roll-off factor $\boldsymbol{\alpha}=\mathbf{0 . 1}$
iv) Simulation run time T on each model: 4, 10 and 17 minutes
Results of the measurements are tabulated in table 4.6
Table 4.6Data Throughput of Un-coded MPSK Downlink Block Models

| MPSK | Data <br> Rate <br> $R(M b p s)$ | $E_{b} / N_{0}$ <br> $(\mathrm{~dB})$ | Received Bits (Gbits) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 4 (Minutes) | 10 <br> (Minutes) | 17 <br> (Minutes) |  |


| BPSK | 5 | 13.5 | 1.2 | 3 | 5.1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| QPSK | 10 | 13.5 | 2.4 | 6 | 10.2 |
| 8-PSK | 15 | 15.5 | 3.6 | 9 | 15.3 |
| 16 PSK | 20 | 21.0 | 4.8 | 12 | 20.4 |
| 32 PSK | 25 | 29.5 | 6 | 15 | 25.5 |

The results in Table 4.6 above shows that Transmission Data Rate (R) and Number of received bits increases with $M$ modulation level but at increasing demand of SNR or $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$. The Spectrums occupied by the MPSK modulated signals are the same as shown in figure 4.13.

## (B) Convolution Coded MPSK on Downlink Block Models

Convolution coded BPSK/QPSK/8-PSK/16-PSK/32-PSK downlink models are formed as in section 4.06 and the simulations are performed as follows:

Simulation Benchmarks: Same as in (A) above
Results of the measurements are tabulated in table 4.7
The results in table 4.7 shows that for convolution coded MPSK, there are small reductions on the required $E_{b} / N_{o}$ for $B E R=10^{-6}$ due moderate coding gain of convolution code. However, received decoded bits or information data throughputs of the link have been reduced due to coding bits overhead. The bandwidth occupied by the coded modulated signals are the same with the un-coded modulated signal of figure 4.13.

Table 4.7Data Throughput of Convolution Coded MPSK Downlink

| Scheme | Code <br> Ratek <br> n | Data <br> Rate <br> $\mathrm{R}(\mathrm{Mbps})$ | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ <br> $(\mathrm{dB})$ | Bits Decoded (Gbits) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 4(Minutes <br> $)$ | 10 <br> (Minutes) | $17($ Minut <br> es) |  |
| BPSK | $1 / 2$ | 10 | 10.7 | 1.2 | 3 | 5.1 |
| QPSK | $1 / 2$ | 10 | 10.7 | 1.2 | 3 | 5.1 |


| 8-PSK | $2 / 3$ | 15 | 14.5 | 2.4 | 6 | 10.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16-P SK | $3 / 4$ | 20 | 20.2 | 3.6 | 9 | 15.3 |
| 32-PSK | $4 / 5$ | 25 | 28.5 | 4.8 | 12 | 20.4 |

## C) Trellis Coded Modulation on Downlink Block Models

Trellis coded modulation on QPSK/8-PSK/16-PSK/32-PSK downlink models are formed as in section 4.8 and the simulations are performed as follows:

Simulation Benchmarks: Same as in (A) above.
Results of the Measurements are tabulated in table 4.8

Table 4.8Data Throughput of TCM /MPSK Downlink Model

| Scheme | Code <br> Rate <br> $\mathrm{k} / \mathrm{n}$ | Data <br> Rate R <br> $(\mathrm{Mbps})$ | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ <br> $(\mathrm{dB})$ | Decoded Bits (Gbits) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 4 <br> (Minutes) | 10 <br> $($ Minutes) | 17 <br> (Minutes) |  |
| QPSK/ TCM | $1 / 2$ | 10 | 7.0 | 1.2 | 3 | 5.1 |
| 8-PSK/ TCM | $2 / 3$ | 15 | 9.8 | 2.4 | 6 | 10.2 |
| 16PSK/ TCM | $3 / 4$ | 20 | 13.0 | 3.6 | 9 | 15.3 |
| 32PSK/ TCM | $4 / 5$ | 25 | 18.2 | 4.8 | 12 | 20.4 |

The results in Table 4.8 shows some significant reduction in the required Signal power $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ for TCM schemes compared to that of Convolution codes with same coding parameters. Bandwidthsoccupied by the TCM signals are same with that of un-coded and convolution coded signal. Received bits or Information data throughputs for both convolution coded and TCM are same.

## (D) Optimisation of Data Throughput on Multi-State TCM/8-PSK

Data Throughput simulationswere run discretely on each of the MultiState TCM/8-PSK encoder, without the FSL insertion as in section 4.7

Simulation Benchmarks: Same as in (A) above.

Results of the Measurements are tabulated in Table 4.8.
Table 4.9 DataThroughput on Multi-State TCM/8-PSK

| Encoder | Code Ratek/n | Data Rate R (Mbps) | $\begin{aligned} & \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}} \\ & \text { (dB) } \end{aligned}$ | Decoded Bits (Gbits) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 4(Minutes | $\begin{aligned} & 10 \text { (Minu } \\ & \text { tes) } \end{aligned}$ | 17(Minutes) |
| 4-State | 2/3 | 15 | 10.8 | 2.4 | 6 | 10.2 |
| 8-State | 2/3 | 15 | 10.3 | 2.4 | 6 | 10.2 |
| 16-State | 2/3 | 15 | 9.2 | 2.4 | 6 | 10.2 |
| 32-State | 2/3 | 15 | 8.8 | 2.4 | 6 | 10.2 |
| 64-State | 2/3 | 15 | 8.5 | 2.4 | 6 | 10.2 |
| 128-State | 2/3 | 15 | 8.2 | 2.4 | 6 | 10.2 |

The results of multi-state encoders in table 4.8 have the potentials for optimisation on high data rate of 15 Mbps at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ of less 10 dB . These resultsare analysed in details in Chapter 5.

## CHAPTER FIVE ANALYSIS OF SIMULATION RESULTS

### 5.0 Introduction

This chapter is to analyse the advantagesof Trellis Coded Modulation over Convolution coded on MPSK by comparison of coding gains fromthe two techniques and perform optimisation of Data Throughput based on the highlighted constrains ofLEO satellite downlink.

Theoretical MPSK and Convolution coded links were initially simulated atstage 1 of chapter 4 to obtain some theoretical linkparameters of MPSK and Convolution codes. These parameters were used to choose and fine tune parameters of downlink models built with block units in the MATLAB. The simulation plots obtained for the downlink were superimposed on the plots of corresponding theoretical links for easy comparison. Similarly in stage 2downlink block models built with TCM/MPSK schemes were simulated and the plots were superimposed again on that of the theoretical. In both convolution coding and TCM optimum code ratewere applied to conserve bandwidth (i.e. code rate $=$ $k / n$, with $n=k+1$ ).
In this chapter coding gain is calculated from the simulation results of chapter four, it is thedifference between received $E_{b} / N_{o}$ of uncoded and coded links transmitting same number of information (source) bits per symbol plotsat a given BER (see chapter 3). In this work the values $\mathrm{E}_{b} / \mathrm{N}_{0}$ are obtained from interpolation at $\mathrm{BER}=10^{-6}$ on the plots in figure 4.3-7

The simulation instage 3 was performedonsix multi-state TCM/8-PSK encoders, initially the encoders were simulated discretely andBERplot for each was obtained. The conceptual model could not be simulated as proposed due to unavailability of the Tracking sensor/ selector switch, as a result it was modified and the encoders were simulated in composite. A frequency multiplexer was used to form the composite and a power loss block was inserted along each path to reflect expected variation in FSL.Implications of the modified conceptual model and the simulated power loss insertions would be anaysed.
In stage 4 of chapter 4, data throughput measurements were performed on all the models simulated including the discrete simulations on six multi-state TCM/8-PSK encoders, the results obtained would be compared for optimisation of the downlink.

### 5.1Performance of Convolution coded MPSK Theoretical Link

Theoretical MPSK links were simulated in section 4.2and simulation plots are shown in figure 4.3-7. The plots of uncoded BPSK in figure 4.3 and that of uncoded QPSK in figure 4.4 are the sameand have equal $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ requirements for all values of BER, this confirmed the assertion madeon probabilities of error $\left(\mathrm{P}_{\mathrm{e}}\right)$ of the two scheme in chapter 2.

Table 5.1PerformanceAnalysis of TheoreticalMPSK Link

|  | MPSK <br> Scheme | Input $k$ info <br> bit per <br> symbol | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}(\mathrm{dB})$ At BER $=10^{-6}$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | Uncoded | Coded |
| 1 | BPSK | 1 | 10.7 | 8 |
| 2 | QPSK | 2 | 10.7 | 8 |
| 3 | $8-$ PSK | 3 | 14.0 | 11.0 |
| 4 | 16 PSK | 4 | 18.2 | 17.3 |
| 5 | 32 PSK | 5 | 23.5 | 24.5 |

The values of $E_{b} / N_{0}$ at $B E R=10^{-6}$ for uncoded and coded Theoretical MPSK links were read from the performance plots of shown in figure 4.03-07 and tabulated in table 5.01. In both BPSK and QPSK at $B E R=10^{-6}$, the required $E_{b} / N_{o}=10.5 \mathrm{~dB}$, this is same as predicted in theory in figure 2.09 of chapter two at $P_{e}=10^{-6}$. Theoretical uncoded 8PSK on figure 4.05 requires $E_{b} / N_{0}$ of 14 dB at $\mathrm{BER}=10^{-6}$ which was predicted in figure 2.10 at $P_{e}=10^{-6}$ and same is true with 16-PSK on figure 4.6. These results confirmed that:
i) Probability of error $\left(\mathrm{P}_{\mathrm{e}}\right)$ for uncoded digital link can be measured as Bit Error Rate (BER).
ii) The obvious advantage of QPSK over BPSK, as both have same power requirements but the former has higher spectral efficiency of $2 \mathrm{bits} / \mathrm{Hz}$. For this reason this research work dropped further consideration on BPSK in on throughput optimization.

When MPSK is used on convolution coded data, its BER plotsalso maintained the curvature shape as the uncoded with difference as shown in figure 4.3-7. On $1 / 2$-rate coded QPSK link for instance, the power requirements in $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ at $\mathrm{BER}=10^{-6}$ dropped from 10.7 to 8 dB as shown in table 5.1. To calculate coding gain of this convolution code on QPSK, the power requirement is compared with that of uncoded scheme that transmit same source bit per symbol, which in this case is uncoded BPSKand the difference of the two power requirements is taken as coding gain, in this case coding gain $=(10.7 i ̈ l)=2.7 \mathrm{~dB}$. Similar comparisons are made onfour levels of MPSK,each on optimal coded rate in table 5.2.

Table 5.2Coding Gains of Convolution Codes on Theoretical MPSK Links

| $k$ | Uncoded <br> MPSK <br> Scheme | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ <br> $(\mathrm{dB})$ | Optimal <br> Code <br> Rate $\mathrm{k} / \mathrm{n}$ | Coded <br> $(\mathrm{M}+1)$ PSK <br> at $k+1$ <br> bit/symbol | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ <br> $(\mathrm{dB})$ | Coding Gain <br> $\mathrm{G}_{\mathrm{cc}}(\mathrm{dB})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | BPSK | 10.5 | $1 / 2$ | QPSK | 8 | 2.5 |
| 2 | QPSK | 10.5 | $2 / 3$ | $8-$ PSK | 11.0 | -0.5 |
| 3 | $8-P S K$ | 14 | $3 / 4$ | 16-PSK | 17.3 | -3.3 |
| 4 | 16PSK | 18.2 | $4 / 5$ | 32PSK | 24.5 | -6.3 |

The results shows positive gain for $1 / 2$-rate convolution coded data on QPSK and negative gain for other optimally coded link on higher MPSK schemes. This implies that onhigherMPSK, which are generallymore bandwidth efficient requires more power is requiredto transmit source data than at lower uncoded (M-1)PSK. This verified the assertion made on inadequacy of Convolution Codingon power constrained link.in chapter 3.

### 5.2 Performance of Convolution Coded MPSK on Downlink Block Models

The results of Theoretical MPSK linksarein agreement with the theories in chapter two on MPSK schemes mentioned, but still remained hypothetical. Performance of a communication model built with MATLAB block units in which link parameters such as data rate, filters, power gains and losses etc are specified is more realistic.Before any search work on optimization is done a Downlink block models, its validity are verified against the hypothetical results. The block model parametersare fine-tuned until its performances are within acceptable implementation margin.
SimulationsofuncodedMPSK block modelwere conducted in section 4.5 andits BER plots were again superimposed onfigure 4.3-7.The BER plots obtained for the uncoded block model also maintained the curvature of that from the Theoretical links.Values of $\mathrm{E}_{b} / \mathrm{N}_{0}$ at $\mathrm{BER}=10^{-}$ ${ }^{6}$ for the uncoded downlink block models are obtained from the plots and tabulated in table 5.3(a). Implementation margin in comparison with Theoretical values are calculated and tabulated against each model.The implementation margins varies among the MPSK schemes in uncoded models, 8 -PSK has the least implementation margin of 1.5 dB , while $32-$

PSK has implementation margin 6.5 dB , the results are within expected values due toapplication of non-ideal filters and the high probability of symbol error in 32-PSK (equation 2.58)

Table 5.3PerformanceAnalysis ofUncoded and Convolution Coded MPSK onDownlink Block Models
a) Uncoded

|  | MPSK <br> Scheme | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}(\mathrm{dB})$ At BER $=10^{-6}$ |  | Implementation <br> Margin (dB) |
| :--- | :--- | :--- | :--- | :--- |
|  | Theoretical <br> Link | Block <br> Downlink |  |  |
| 1 | BPSK | 10.5 | 13.5 | 3.0 |
| 2 | QPSK | 10.5 | 13.5 | 3.0 |
| 3 | 8-PSK | 14.0 | 15.5 | 1.5 |
| 4 | $16 ~ P S K ~$ | 18.0 | 20.4 | 1.6 |
| 5 | 32 PSK | 23.0 | 29.5 | 6.5 |

b) Convolution Coded

|  | MPSK <br> Scheme | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}(\mathrm{dB})$ At BER $=10^{-6}$ |  | Implementation <br> Margin (dB) |
| :--- | :--- | :--- | :--- | :--- |
|  | Theoretical <br> Link | Block <br> Downlink |  |  |
| 1 | BPSK | 8 | 10.7 | 2.7 |
| 2 | QPSK | 8 | 10.7 | 2.7 |
| 3 | $8-P S K$ | 11.0 | 14.5 | 3.5 |
| 4 | 16 PSK | 17.3 | 19.4 | 3.1 |
| 5 | 32 PSK | 24.5 | 28.5 | 4.0 |

When block units of convolution encoders and decoders were added to the block model with same polynomial setting (as in Theoretical link), its performance plots were superimposed on figure 4.3-7. Values of $E_{b} / N_{o}$ at BER $=10^{-6}$ for the coded models dropped slightly from the values of uncoded and implementation margin against coded Theoretical are tabulated in table 5.3(b). The discrepancy on implementation margins between the uncoded and coded tables indicates suitability of each convolution encoder on its MPSK. Codinggain for the convolution codes on the block models are calculated and tabulated in table 5.4.The results on coding gain showed positive coding gain on QPSK only, while on higher MPSK the gains are negative, this meansfor $M>4$ on the same
bandwidth,more power is required to transmit convolution codedbits $(k+1)$ than uncoded bits (k).The discrepancy on coding gains of the same code between table 5.2 and 5.4, means that the Convolution code have its implementation margin between Theoretical and block models.

Table 5.4Coding Gains of Convolution Codes on MPSK Block Downlink Block Models

| $k$ | Uncoded <br> MPSK k <br> bits/symbol | $E_{b} / N_{o}$ <br> $(\mathrm{~dB})$ <br> $($ (ncoded $)$ | Coded (M+1)-PSK <br> withk+1 bit/symbol | Coded <br> $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ <br> $(\mathrm{dB})$ <br> $(\mathrm{Coded})$ | Coding <br> Gain (dB) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | BPSK | 13.5 | QPSK | 10.7 | 2.8 |
| 2 | QPSK | 13.5 | 8PSK | 14.5 | -1.0 |
| 3 | 8PSK | 15.5 | 16PSK | 19.4 | -3.9 |
| 4 | 16PSK | 20.5 | 32PSK | 28.5 | -8.0 |

### 5.3 Performance of TCM/MPSKon Downlink Block Models

MATLAB software does not support Theoretical TCM simulation; however it supports simulation of TCM on block model.Therefore TCM on MPSK downlink block models were formed and simulated in stage 2 of chapter 3. TCM simulation plots were also superimposed on the figure 4.3-7 for comparison. The values of $E_{b} / N_{o}$ at $B E R=10^{-6}$ in table 5.5 for TCM/MPSK dropped more than in table 5.4 for Convolution codes.

Table 5.5 Performance Analysis of TCM/MPSK on Downlink block model

| SCHEME | $E_{b} / N_{o}(\mathrm{~dB})$ at BER $=10^{-6}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | BPSK | QPSK | 8 -PSK | $16-\mathrm{PSK}$ | $32-\mathrm{PSK}$ |
| Uncoded | 13.5 | 13.5 | 17.2 | 22.3 | 28.8 |
| TCM | - | 7 | 9.5 | 13.0 | 18.2 |

The coding gain in TCM scheme is also calculated against uncoded scheme transmitting same information bits at same BER asin
convolution coded schemes. TCM coding gains are calculatedand tabulated in table 5.6.

Table 5.6Coding Gain of TCM/MPSK on Downlink Block Models

| k | UncodedMPSK$M=2^{k}$ |  | TCM /MPSK Scheme$M=2^{k+1}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}} \\ & (\mathrm{~dB}) \end{aligned}$ |  | $\begin{aligned} & \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0} \\ & (\mathrm{~dB}) \end{aligned}$ | Coding Gain(dB) |
| 1 | BPSK | 13.5 | QPSK | 7 | 6.5 |
| 2 | QPSK | 13.5 | 8PSK | 9.5 | 4.0 |
| 3 | 8PSK | 15.5 | 16PSK | 13.0 | 2.5 |
| 4 | 16PSK | 20.40 | 32PSK | 18.2 | 2.2 |

The TCM has more positive coding gain (at all modulation levels)than on convolution coded models, the advantage of the later over the former is manifested in comparison table 5.7. This has proofthe validity of the built Downlink Block models and its readiness for use in Optimisation of Data Throughput.
Table 5.7 Coding Gain Comparison betweenConvolution coded and TCM

|  | MPSK | Convolution Coding Gain <br> $(\mathrm{dB})$ | TCM Coding Gain <br> $(\mathrm{dB})$ |
| :--- | :--- | :--- | :--- |
| 1 | QPSK | 2.8 | 6.5 |
| 2 | $8-$ PSK | -1.0 | 4.0 |
| 3 | $16-$ PSK | -3.9 | 2.5 |
| 4 | $32-$ PSK | -8.0 | 2.2 |

It has been deduced furthermore in section 3.9, thatcoding gain on each TCM can be increased whennumber of itslogical transition states is increased. Thus, the Conceptual model of section 3.10was developedwith multiple transition state encoders.

### 5.4Discrete Performance of Multi-State Encoders

Discrete simulations for the six Multi-state TCM/8-PSK encoders were performed in Section 4.7, BER performance plots obtained were shown in figure 4.19-25. The plots are used to obtain values of $E_{b} / N_{0}$ at $B E R=$ $10^{-6}$ and coding gains are calculated as follows:
a) 4-State TCM/8-PSK Encoder;

Reading from plot in figure 4.20
$E_{b} / N_{0}=13.5 \mathrm{~dB}$ for uncoded QPSK at $B E R=10^{-6}$
$\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=10.8 \mathrm{~dB}$ for 4 -State encoder at $\mathrm{BER}=10^{-6}$
Coding Gain $=(13.5-10.8)=2.7 \mathrm{~dB}$
b) 8-State TCM/8-PSK Encoder;

Reading from plot in figure 4.21
$E_{b} / N_{0}=13.5 \mathrm{~dB}$ for uncoded QPSK at $B E R=10^{-6}$
$\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=10.3 \mathrm{~dB}$ for 8 -State TCM/8-PSK at BER $=10^{-6}$
Coding Gain $=(13.5-10.3)=3.3 \mathrm{~dB}$.
c) 16-State TCM/8-PSK Encoder;

Reading from plot in figure 4.22
$\mathrm{E}_{b} / \mathrm{N}_{0}=13.5 \mathrm{~dB}$ for uncoded QPSK at BER=10-6
$\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=9.2 \mathrm{~dB}$ for 18 -State $\mathrm{TCM} / 8-\mathrm{PSK}$ at $\mathrm{BER}=10^{-6}$
Coding Gain $=(13.5-9.2)=4.3 \mathrm{~dB}$.
d) 32-State TCM/8-PSK Encoder;

Reading from plot in figure 4.23
$E_{b} / N_{0}=13.5 \mathrm{~dB}$ for uncoded QPSK at BER=10-6
$\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=8.8 \mathrm{~dB}$ for 32-State TCM $/ 8-\mathrm{PSK}$ at BER $=10^{-6}$
Coding Gain $=(13.5-8.8)=4.7$
e) 64-State TCM/8-PSK Encoder;

Reading from plot in figure 4.24
$\mathrm{E}_{b} / \mathrm{N}_{0}=13.5 \mathrm{~dB}$ for uncoded QPSK at BER=10 ${ }^{-6}$
$\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=8.5 \mathrm{~dB}$ for 64-State TCM/8-PSK at BER=10 $0^{-6}$
Coding Gain $=(13.5-8.5)=5.0 \mathrm{~dB}$
f) 128 -State TCM/8-PSK;

Reading from plot in figure 4.25
$\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=13.5 \mathrm{~dB}$ for uncoded QPSK at BER=10-6
$\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=8.2 \mathrm{~dB}$ for 128 -State $\mathrm{TCM} / 8-\mathrm{PSK}$ at $\mathrm{BER}=10^{-6}$
Coding Gain $=(13.5$ Ï 8.2 $)=5.3 \mathrm{~dB}$.

The above simulated coding gains and the Theoretical coding gains obtained in section 3.10are tabulated in table 5.8, the implementation margins are calculated accordingly.

Table 5.8Discrete Coding Gains of Multi-State TCM/8-PSK Encoders

|  | Theoretical <br> Coding Gain (dB) | Simulated <br> Coding Gain (dB) | Implementation <br> Margin $(\mathrm{dB})$ |
| :--- | :--- | :--- | :--- |
| 4-State | 3.0 | 2.7 | -0.3 |
| 8-State | 3.6 | 3.3 | -0.2 |
| 16-State | 4.32 | 4.3 | -0.02 |
| 32-State | 4.771 | 4.7 | -0.07 |
| 64-State | 5.128 | 5.0 | -0.12 |
| 128-State | 5.54 | 5.3 | -0.24 |

The differences between simulated coding gains and Theoretical coding gains in table 5.8are due implementation margin, with 128 -state and 32State having the highest of 1.1 dB and the lowest of 0.03 dB respectively.

### 5.5 Performance of Multiplexed Multi-State TCM/8-PSK Model

The Conceptual model was conceived to counter the variation in Downlink Free Space Loss of LEO Satellite, it was modified in section4.8 due to lack satellite tracking sensor in the MATLAB to select the countering encoder gain. In the modified model all the encoders were simulated in composite, while the variation in the Free Space Loss was made to be equivalent to differential coding gains of the Multi-State encoders. The model was simulated at uniform $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$, a baseline coding gain for a 4-State encoder at 3dB was used for each encoder and the differential gain inserted as Free Space Loss.

Table 5.9Differential Coding Gainsof Multi-State Encodersfrom 3dB

| S/N | TCM/8- <br> PSK | Theoretical <br> Coding <br> Gain | Differential from 3dB |  | Simulated |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Theoretical | Simulated | Coding <br> Gain |  |  |
| 1 | 4-State | 3.0 | 0.0 | 0.0 | 3.0 |
| 2 | 8-State | 3.6 | 0.6 | 0.5 | 3.5 |


| 3 | 16-State | 4.12 | 1.12 | 1.0 | 4.15 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | $32-$ State | 4.77 | 1.7 | 1.2 | 4.2 |
| 5 | 64-State | 5.12 | 2.12 | 1.55 | 1.5 |
| 6 | 128 -State | 5.54 | 2.54 | 2.0 | 2.0 |

The inserted differential losses were obtained iteratively at uniform BER $=10^{-6}$, these are tabulated in table 5.9.Theoretical differential gains in the table are calculated from expected coding gain in section 3.10.The results from all the encoders under the variation inLoss were: i) uniform $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ delivered uniform BER ii)uniform Bandwidth supplied uniform Data rate.

### 5.6 Data Throughput Comparison and Optimisation on LEO Downlink Block Models

In section 4.9Data Throughput were measured for Uncoded MPSK, Convolution coded MPSK and Trellis coded modulation MPSK on Downlink Block models. A uniform symbol rate of 5 Msps was transmitted on Bandwidth of 5.5 MHz in all the models. Optimum code rates of $k / k+1$ were used on both Convolution coded and Trellis coded modulation.

At BER $=10^{-6}$ Data bits Received/Decodedwere counted for periods of 4,10 and 17 minutes, the results are summarised in table 5.10.

Table 5.10Data Throughput Comparison between Uncoded, Convolution Coded and TCMon MPSK Downlink Block Model

| Scheme | Code Rate | $\begin{aligned} & \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}} \\ & (\mathrm{~dB}) \end{aligned}$ | Transmission Data Rate R(Mbps) | Decoded DataThroughput (Gbits) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 4 | 10 | 17(Minu |


|  |  |  |  | (Minutes) | (Minutes) | tes) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BPSK | - | 13.5 | 5 | 1.2 | 3 | 5.1 |
| QPSK | - | 13.5 | 10 | 2.4 | 6 | 10.2 |
| 8-PSK | - | 15.5 | 15 | 3.6 | 9 | 15.3 |
| 16-PSK | - | 20.5 | 20 | 4.8 | 12 | 20.4 |
| 32-PSK | - | 29.5 | 25 | 6.0 | 15 | 25.5 |
| Coded BPSK | $1 / 2$ | 10.7 | 5 | 0.6 | 1.5 | 2.55 |
| Coded QPSK | $1 / 2$ | 10.7 | 10 | 1.2 | 3 | 5.1 |
| Coded 8-PSK | $2 / 3$ | 14.5 | 15 | 2.4 | 6 | 10.2 |
| Coded16-PSK | $3 / 4$ | 19.5 | 20 | 3.6 | 9 | 15.3 |
| Coded 32-PSK | $4 / 5$ | 28.5 | 25 | 4.8 | 12 | 20.4 |
| TCM/BPSK | - | - | - | - | - | - |
| TCM/QPSK | $1 / 2$ | 7.0 | 10 | 1.2 | 3 | 5.1 |
| TCM/8PSK | $2 / 3$ | 9.5 | 15 | 2.4 | 6 | 10.2 |
| TCM/16PSK | $3 / 4$ | 13.0 | 20 | 3.6 | 9 | 15.3 |
| TCM/32PSK | $4 / 5$ | 18.2 | 25 | 4.8 | 12 | 20.4 |

When volume of Data Throughput (counted Data) for each scheme is compared against its power $\left(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}\right)$ requirements, the following deductions are made:
i) To deliver Data Throughput of 1.2Gbits in minimum downlink communication time of 4 minutes, uncoded BPSK requires $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=13.5 \mathrm{~dB}$; $1 / 2$ rate convolution coded QPSKrequires $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=10.7 \mathrm{~dB}$; while $1 / 2$ rateTCM/QPSK requires $\mathrm{E}_{b} / \mathrm{N}_{0}=7.0 \mathrm{~dB}$.
ii) To deliver 6 Gbits of data throughput in average downlink communication time of 10 minutes, uncoded QPSK requires $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=13.5 \mathrm{~dB} ; 2 / 3$ rate convolution coded $8-\mathrm{PSK}$ requires $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}=14.5 \mathrm{~dB}$; while $2 / 3$ rate $\mathrm{TCM} / 8-\mathrm{PSK}$ requires $\mathrm{E}_{b} / \mathrm{N}_{0}=$ 9.5 dB .
iii) To deliver 9Gbits of data throughput in average downlink time of 10 minutes, uncoded 8-PSK link requires $E_{b} / N_{0}=15.5 \mathrm{~dB}$; 3/4 rate convolution coded 16-PSK requires $E_{b} / N_{0}=19.4 \mathrm{~dB}$; while $3 / 4$ rate $T C M / 16-P S K$ requires $E_{b} / N_{0}=13.0 \mathrm{~dB}$.
iv) To deliver 12Gbits of data throughput in maximum downlink time of 17 minutes, uncoded 16-PSK link requires $\mathrm{E}_{b} / \mathrm{N}_{0}=$ 20.5 dB ; $4 / 5$ rate convolution coded 32 -PSK requires $\mathrm{E}_{b} / \mathrm{N}_{0}=$ 28.5 dB ; while $4 / 5$ rate $T C M / 32-\mathrm{PSK}$ requires $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{b}}=18.2 \mathrm{~dB}$.

The highest data throughput recorded is on 32-PSK at high value of $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=28.5$ for convolution coding and at $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{b}}=18.2 \mathrm{~dB}$ for $\mathrm{TCM} / 32-$ PSK.Convolution coding and TCM delivers same data throughput,but the latter has advantage to deliver same BER at lower $E_{b} / N_{o}$. For optimization of data throughput in a power limited downlink, TCM/8-PSK has moderate throughput and also moderate power requirement $E_{b} / N_{0}=$ 9.5 dB .

Consequently, search for higher coding gain on TCM/8-PSK was conducted as shown in section 4.09(D).

Table 5.11Optimisation of Data Throughput on Multi-State TCM/8-PSK

| Encoder | Code <br> Rate $\mathrm{k} / \mathrm{n}$ | Data <br> Rate R <br> $($ Mbps) | $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ <br> $(\mathrm{dB})$ | Decoded Bits (Gbits) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 10 <br> (Minutes) | 17 <br> (Minutes) |  |
| 4-State | $2 / 3$ | 15 | 10.8 | 2.4 | 6 | 10.2 |
| 8-State | $2 / 3$ | 15 | 10.3 | 2.4 | 6 | 10.2 |
| 16-State | $2 / 3$ | 15 | 9.2 | 2.4 | 6 | 10.2 |
| 32-State | $2 / 3$ | 15 | 8.8 | 2.4 | 6 | 10.2 |
| 64-State | $2 / 3$ | 15 | 8.5 | 2.4 | 6 | 10.2 |
| 128-State | $\mathbf{2 / 3}$ | $\mathbf{1 5}$ | $\mathbf{8 . 2}$ | $\mathbf{2 . 4}$ | $\mathbf{6}$ | $\mathbf{1 0 . 2}$ |

The 128-State TCM/8-PSK encoder that offered the highest coding gain is therefore selected for Optimisation of Data Throughput on LEO Satellite Downlink. The result is shown in table 5.11

## CHAPTER SIX

 CONCLUSION AND RECOMMENDATION
## CONCLUSION:

This Thesis has expounded the potentials of Trellis Coded Modulation scheme and applied it to LEO satellite downlink that is constrained in time, power and bandwidth. A TCM/8-PSK scheme was identified to be applicable to theoptimization of data throughput because of its modest demand on power and good utilization of bandwidth. The scheme was explored with MATLAB downlink block models, it generated significant coding gain in the range of 2.7 to 5.4 dB at $\mathrm{BER}=10^{-6}$. On the other hand convolution code generatedmaximum coding gain 2.8dBona QPSK.

A 128-State Transition TCM/8-PSK encoder that generated coding gain of 5.4 dB was specifically selected for the optimization. Data rate of 15 Mbps was realized with theTCM encoder on a downlink bandwidth of 5.5 MHz , at received $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=8.2 \mathrm{~dB}$ and $\mathrm{BER}=10^{-6}$. While same data rate of 15 Mbps was realized with convolution encoder on 8-PSK on a downlink bandwidth of 5.5 MHz , but at received $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=14.5 \mathrm{~dB}$ and $B E R=10^{-6}$, a difference in $E_{b} / N_{0}$ of 6.3 dB was realized in this optimization work and the bandwidth efficiency of 8-PSK was conserved at approximately 3bits/Hz.

Thus, Optimisation of Data Throughput was achieved at optimum code rate (1-bit overhead) on the downlink of LEO satellite. Decoded information bits received at 2.4 Gbits,6Gbits and 10.2Gbits which corresponds to minimum (4 minutes), average(10 minutes) and maximum (17 minutes) durations of satellite passage over a Ground stationrespectively.Although the results obtained in this work were not close to Shannon's limits as that was not the objective, the objective was to achieve high coding gain of TCM and high spectral efficiency of MPSK schemes for reliable LEO Satellite downlink at Qos of BER=10 ${ }^{6}$.In general,coding techniques with very high coding gain that that reduces SNR to near Shannon's limits, such as Turbo and Concatenated Coding addslarge number of overhead bits to reduce the information throughput.

Attempts were made to explorecoding gain variations within a TCM/8PSK scheme as predicted in table 3.6. A Conceptual model of MultiState TCM/8-PSK downlink model was proposed in Chapter Three, its code structures were to change in steps during the satellite passage, each step has its coding gain to counter the downlink FSL. Coding structures for six steps were developed andsimulated discretely, six
coding gains were distinctly realized ( 2.7 to 5.3 dB in table 5.08). However, steps simulationon the encoder could not be realized on the MATLAB, due toprolong delay on unswitched encoders detected by the Software. Consequently the model was modified withthe six encoders simulated in composite using Frequency Multiplexer, a baseline coding gain of 2.7 dB was reservedfor each encoder and the differentials were used to neutralize variation in Free Space Loss. The simulation was performed at uniform bandwidth of 5.5 MHz and uniform $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ of 10.8 dB , the results achieved were uniform data rate of 15 Mbps at uniform BER= $10^{-6}$ across all the encoders despite the variation in FSL (see table 4.00).

## RECOMMENDATION:

Although the neutralizations were short of the maximum variation in FSL of 10 dB (deduced from equation 2.28 ), the principle is still applicable other wireless link with small FSL variation (2.4dB) e.g WI-FI where the distance range < 10 Km .

## REFERENCES

[1] James R. Wertz and Wiley J. Carson, Space Mission Analysis and Design, Third Edition, Published by Microcosm Press TorrenceCalifornia 1999.
[2] Denis Roddy, Satellite Communications, Third Edition, Published by MacGraw Hill Companies, Inc . 2001.
[3] Timothy Pratt, Charles Bostian and Jeremy Allnutt, Satellite Communications, Published by John Wiley \& Sons Inc. 2003.
[4] JohnG. Proakis, Digital Communications, Published by McGraw Hills Companies Inc. 2001.
[5] Peter Fortescue and John Stark, Spacecraft Systems Engineering Second Edition, Published by Wiley and Sons. 2001.
[6] John G. Proakis and MasoudSalehi, Communication Systems Engineering,Published by Pearson Prentice Hall. 2004.
[7] M.A Matar, Throughput /Channel Capacity Improvement Issues for LEO Satellite Based Remote Sensing Systems, IEEE Publication 2003.
[8] VY Chu, W Sun, Professor M.N Sweeting; Optimising LEO Satellite
Communication Link Through Hybrid-ARQ Techniques,Centre for Satellite Engineering Research University of Surrey, United Kingdom, IEEE Publication 1997.
[9]L. HadjAbderrahman, D.E Baba Hameed and M Benyettou; Design of an Adaptive Communication System for Implementation on Board a Future Algerian LEO Satellite,Centre of Space Techniques Division of Space Instrumentation/University of Science and Technology Oran Algeria; IEEE publication 2007.
[10]OndeBelce, Comparison of Advanced Modulation Schemes for LEO Satellite Downlink Communications,TubitakBilten, AnkaraTurkey; IEEE 2003
[11] Chip Fleming , A Tutorial on Convolution Coding with Viterbi Decoding Spectrum Applications 2002 (also available on the Internet).
[12] CharanLanton, Intiuitive Guide to Principle of Communication, www.complextoreal.com 2004.
[13] MATLAB R2010 Software Support Documentation.
[14] BehzadRazavi, RFMicroElectronics, Pearson Education Asia Limited, 2003.
[15] D. Divisalar, S.SDolinar, F Pollara ; Serial Turbo Trellis Coded Modulation with Rate -1 Inner Code Jet Propulsion Laboratory, California Institute of Technology, 2000 (published on the Internet).
[16] Peter Jantunen; Modelling of Amplifier Nonlinearities I Helsinki University of Technology Signal Processing Laboratory(Published on the Internet).
[17] Ghorbani andSheikhan , The Effect of Solid State Power Amlifier(SSPA) non linearities on MPSK and MQAM Transmission, IEEE publication 1991.
[18] Surrey Satellite Technology Documentation on
Nigeriasat-1, NASRDA Library (Unpublished).

## APPENDIX A

Pulse Shaping and Nyquist Filters

When time limited signal passes through bandwidth limited system the response is time unlimited signal, this is readily demonstrated by passing time limited rectangular pulses through bandwidth limited low pass filter (i.e. RC circuit), the output signal exhibit exponential tails corresponding to rise and fall of the input pulses as shown in figure 1A.


Figure 1A (a) NRZ pulse input to an RC Filter (b) Time Response of Individual pulse (c) Time Response of Pulse Train

The exponential portion from one transition extends to the next pulse interval resulting in the output waveform being smeared in time and where the digital pulse pattern is 10 or 01 the amplitude of the second
pulse is reduced by the presence of delayed portion of the preceding pulse this is called InterSymbol Interference (ISI). In addition to noise ISI also increases the likelihood of a receiver for digital communication to detect biit.

The frequency response of the output pulse $\mathrm{V}_{0}(\mathrm{f})$ at the receiver is determined by the frequency response of the input pulse $\mathrm{V}_{\mathrm{i}}(\mathrm{f})$, the transmit filter frequency response $\mathrm{H}_{T}(\mathrm{f})$, the channel frequency response $H_{c h}(f)$ and the receiver filter response $H_{R}(f)$ as shown in figure 2A such that


Figure 2A Digital Baseband Transmission Path
$V_{0}(\mathrm{f})=\mathrm{V}_{\mathrm{i}}(\mathrm{f}) \mathrm{H}_{\mathrm{T}}(\mathrm{f}) \mathrm{H}_{\mathrm{CH}}(\mathrm{f}) \mathrm{H}_{\mathrm{R}}(\mathrm{f})$ é é é é é é é é é é é é é $\ldots 1 \mathrm{a}$
For wireless channel as in satellite link, it is generally considered that $\mathrm{H}_{\mathrm{CH}}(\mathrm{f})=1$ that is the satellite link has flat transfer function and the phase response is linear,[3] thus
$V_{0}(f)=V_{i}(f) H_{T}(f) H_{R}(f)$ é é é é é é é é é é é é é ...é .. 2 a
The inherent inductive and capacitive elements in the two filters ultimately lead to exchange of energy between the magnetic and electric fields so that the square pulses that enters the system may exhibits some ringing at its exits as shown in figure 3Aa. Since these ringing cannot be removed, a creteria was proposed by Nyquist, such that the pulses can be shaped so that sampling of a pulse occurs when the tails of the previous pulses are at zero crossover as shown in figure 3Ab. To achieve this Nyquist Creteria requires to create a pulse in the receiver of the type $\sin x / x$ or sinc $x$ which can be generated when input is an impulse $\left(\mathrm{V}_{\mathrm{i}}(\mathrm{t})=\mathrm{u}(\mathrm{t})\right)$ so that $\mathrm{V}_{\mathrm{i}}(\mathrm{f})=1$ and its frequency response is shown in figure 3Ac,
(a)

(b)

(c)

Figure 3A (a) Pulse Ringing Due inductive and Capacitive effect of Filter (b) Determining Sampling Instant at Zero Crossover point tails
(c) Impulse Spectrum

Equation 2a therefore reduces to
$V_{0}(\mathrm{f})=H_{T}(\mathrm{f}) \mathrm{H}_{\mathrm{R}}(\mathrm{f})$ é é é é é é é é é é é é é é é é é é é é ...3a

By making the transmit and receive filters to match such that the two transfer functions are equal, so that:

$$
=\quad=\quad \text { é é é é é é é é é é é é é é é é é ...é é é } 4 \mathrm{a}
$$

A filter that satisfy the above condition and that

```
= < < < < < é é é é é é é é 5a
```

Then such filters are Square Root Raised Cosine filters or simply Root Raised Cosine (RRC) Filters. The frequency $f_{1}$ and $B$ are determined by the symbol rate and a design parameter called Roll-off Factor (Ŭ) and $0 \leq \leq 1$ é é é é é é é é 6 a

f

Figure 4A Frequency Response of Root Raised Cosine Filter

The frequency response of Root Raised Cosine Filter is shown in figure 4A
$\qquad$ ...é é é é é é é é é é .é é é é 7 a
and

$$
=\text { _ـ_ é é é é ..... ..é é é é é é é é é .8a }
$$

The above derivations are applicable to baseband digital transmissions with $\breve{u}(t)$ impulses as input to meet the sinc $x$ spectrum requirements. However, in digital wireless satellite link, the baseband need to be modulated and transmission is conducted in passband. In such cases the baseband input is typically Non Return to Zero (NZR) whose spectrum is given by $V_{i}(f)$ :

$$
=\ldots \text { é é é é é é é é é é é é é .é é é } .9 \mathrm{a}
$$

Therefore, an equalizer must be use in the transmitter to reverse the spectrum to the condition for zero ISI, as shown in figure 5A


Figure 5A Transmission Path of Modulated NRZ pulses for Wireless Satellite Link
the spectrum of such equalizer is given as:
$=\ldots$ é é é é é é é é é é é é é é é é é .. 10 a

So that equation 1a becomes

$$
=-\times \times \text { é é é é é é .11a }
$$

or
$=$
Thus Nyquist criteria is applied as in baseband transmission and Root Raised Cosine Band Pass Filters (BPF) are used in the Transmitter and Receiver.

The transfer function of Root Raised Cosine Band Pass Filter is equal to that of two single sided (baseband) low pass filter with the centre frequency shifted from zero to carrier frequency.

```
= + - 1+ - - 1- é é é é é é é 12a
```

or
$=1+$ é é é é é é é é é é é é é 13 a

## The Effect of Nyquist Filter on Spectral Efficiency

Equation 2.60 and 2.61 are theoretical spectral efficiency upper bounds for digital modulation schemes, in practice intersymbol interference (ISI) limits these theoretical upper bounds as mentioned in chapter two. The effect of ISI phenomenon can be displayed on oscilloscope in Eye diagram as shown in figure. The ISI causes the Eye to close thereby reducing the margin for additive white noise and increasing sensitivity to error in carrier synchronisation. To reduce the ISI, Nyquist filters are used to filter the digital baseband and the modulated signal. The Root Raised Cosine (RRC) satisfied the Nyquist criteria as highlighted in chapter two is usually split into two (transmit and receive ) sectionsas used in block models of chapter four. The relationship between Symbol rate $R_{s}$ and bandwidth $B_{o c c}$ occupied by modulated signal passed through Nyquist filter is given by[ 2]

$$
=\quad 1+
$$

where $R_{s}$ is symbol rate and $\bar{U}$ is filter roll-off factor with its range values at $0<$ ŬÒ 1 .

But

Therefore equation 14a becomes

$$
\begin{aligned}
& -=-=\frac{}{1+} \\
& \therefore \quad-=\frac{}{(1+\text { ) }} . . \text {... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... } 15
\end{aligned}
$$

From above the RRC filter increases the bandwidth and decreases the spectral efficiency by factor of (1+Ŭ). As Ŭ decreases, the ISI becomes more significant causing more error, a value of $\breve{U}=0.3$ is considered to be sufficient [14] and adopted to mitigate ISI in this work.

## APPENDIX B

## High Power Amplifier (HPA) Analysis

Travelling Wave Tube commonly used power amplifier on big communications Satellites on GEO are not applicable to small LEO
satellites, instead Solid State Power Amplifier (SSPA) are used as High Power Amplifiers (HPA) because of the weight and heat dissipation of the former. Power amplifiers are classified according its linearity, which decreases as its efficiency increases as shown in table 1B.

Table 1B Classification of Power Amplifiers

| AMPLIFIER <br> CLASS | MAXIMUM <br> EFFICIENCY | CONDUCTION <br> ANGLE <br> CYCLE | LINEARITY |
| :--- | :--- | :--- | :--- |
| A | $50 \%$ | 2 | Linear |
| AB |  | $\prime^{\prime}<{\text { Ü }<2^{\prime}}$ | Partial Linear |
| B | $78 \%$ |  | Partially Linear |
| C | $100 \%$ | $\boxed{U}<^{\prime}$ | Non-Linear |
| D | $100 \%$ |  | Non-linear |

The non-linearity in power amplifier causes:
i) Spectral spreading or regrowth of the amplified signal which may lead to adjacent channel interference.
ii) Intermodulation effects where several (Multiplexed) channels are amplified by same HPA.
iii) Interference between I and Q phase components causing phase distortion.
In a memoryless non-linear power amplifier, the output is a function of input at given time instant or fixed delay. A simple carrier modulated input signal $\mathrm{x}(\mathrm{t})$ of the form

$$
=\quad \cos 2 \quad+\quad \ldots \ldots \ldots \ldots \ldots \ldots .1
$$

when applied to a memoryless non-linear HPA such as SSPA, the output signal $y(t)$ produced is given as

$$
=\quad \cos 2+\quad+\quad \ldots \ldots \ldots \ldots . .2
$$

Where $g[A(t)]$ is gain distortion function and $u(A(t))$ is the phase distortion function, representing output amplitude distortion and output phase deviation due to increase of input beyond the amplifier compression point. The two expressions above can also be presented in complex envelopes without the carrier components as: [16 ]

$$
=\quad \rightarrow \quad=\quad \ldots \ldots 3
$$

The two distortion parameters $g[A(t)]$ and $u(A(t))$ are usually described as $A M-A M$ conversion and $A M-P M$ conversion respectively. The two distortion effects are more significant on QAM- where the modulating parameters are both Amplitude and Phase than in PSK ï where the modulating parameter is Phase only. Detailed analysis on the effect of non-linearity on MPSK and MQAM are beyond the scope of this research work [17].

| Page 76: [1] Formatted | user | 1/30/2016 3:33:00 PM |
| :--- | :---: | :---: |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.34", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 76: [2] Formatted $\quad$ user | 1/30/2016 3:33:00 PM |
| :--- | :--- |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.34", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Page 76: [3] Formatted user 1/30/2016 3:33:00 PM

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 76: [4] Formatted user | 1/30/2016 3:33:00 PM |
| :--- | :--- |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 76: [5] Formatted | user | 1/30/2016 3:33:00 PM |
| :--- | :---: | :---: |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 76: [6] Formatted | user | 1/30/2016 3:33:00 PM |
| :--- | :--- | :--- |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 76: [7] Formatted user 1/30/2016 3:33:00 PM |
| :--- | :--- |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: 0.11", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Page 77: [8] Formatted user 1/30/2016 3:33:00 PM

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Page 77: [9] Formatted user 1/30/2016 3:33:00 PM

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.35", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 77: [10] Formatted | user | 1/30/2016 3:33:00 PM |
| :--- | :--- | :--- |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.36", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 77: [11] Formatted | user | 1/30/2016 3:33:00 PM |
| :--- | :---: | :---: |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.36", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Page 77: [12] Formatted user 1/30/2016 3:33:00 PM

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.36", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

| Page 77: [13] Formatted user 1/30/2016 3:33:00 PM |
| :--- | :--- |

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.36", Relative to: Paragraph, Horizontal: 0.13", Wrap Around
Page 77: [14] Formatted user 1/30/2016 3:33:00 PM

Justified, Line spacing: single, Position: Horizontal: Right, Relative to: Margin, Vertical: -1.36", Relative to: Paragraph, Horizontal: 0.13", Wrap Around

